Hessian-based optimization of constrained quantum control

Efficient optimization of quantum systems is a necessity for reaching fault tolerant thresholds. A standard tool for optimizing simulated quantum dynamics is the gradient-based \textsc{grape} algorithm, which has been successfully applied in a wide range of different branches of quantum physics. In this work, we derive and implement exact $2^{\mathrm{nd}}$ order analytical derivatives of the coherent dynamics and find improvements compared to the standard of optimizing with the approximate $2^{\mathrm{nd}}$ order \textsc{bfgs}. We demonstrate performance improvements for both the best and average errors of constrained unitary gate synthesis on a circuit-\textsc{qed} system over a broad range of different gate durations.

[1]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[2]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[3]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[4]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[5]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[6]  Ronnie Kosloff,et al.  Quantum computing by an optimal control algorithm for unitary transformations. , 2002, Physical review letters.

[7]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[8]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[9]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[10]  Navin Khaneja,et al.  Effective Hamiltonians by optimal control: solid-state NMR double-quantum planar and isotropic dipolar recoupling. , 2006, The Journal of chemical physics.

[11]  Jorge Nocedal,et al.  An interior algorithm for nonlinear optimization that combines line search and trust region steps , 2006, Math. Program..

[12]  G. S. Paraoanu,et al.  Microwave-induced coupling of superconducting qubits , 2006, 0801.4541.

[13]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[14]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[15]  Fred W. Glover,et al.  Scatter Search and Local Nlp Solvers: A Multistart Framework for Global Optimization , 2006, INFORMS J. Comput..

[16]  T. Duty,et al.  Perfect mirror transport protocol with higher dimensional quantum chains. , 2008, Physical review letters.

[17]  Navin Khaneja,et al.  Optimal control in NMR spectroscopy: numerical implementation in SIMPSON. , 2009, Journal of magnetic resonance.

[18]  R. S. Said,et al.  Robust control of entanglement in a nitrogen-vacancy center coupled to a C 13 nuclear spin in diamond , 2009, 0903.3827.

[19]  J. M. Gambetta,et al.  Optimal generation of Fock states in a weakly nonlinear oscillator , 2009, 0909.4788.

[20]  A Chebychev propagator for inhomogeneous Schrödinger equations. , 2008, The Journal of chemical physics.

[21]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[22]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[23]  Abolfazl Bayat,et al.  Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control , 2009, 0911.5405.

[24]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[25]  Chad Rigetti,et al.  Fully microwave-tunable universal gates in superconducting qubits with linear couplings and fixed transition frequencies , 2010 .

[26]  Austin G. Fowler,et al.  Tunable coupling between three qubits as a building block for a superconducting quantum computer , 2010, 1102.0307.

[27]  J. M. Gambetta,et al.  Optimal control methods for rapidly time-varying Hamiltonians , 2011, 1102.0584.

[28]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[29]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[30]  Raymond Laflamme,et al.  Experimental quantum simulation of entanglement in many-body systems. , 2011, Physical review letters.

[31]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[32]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[33]  N. Khaneja,et al.  Optimal control for generating quantum gates in open dissipative systems , 2006, quant-ph/0609037.

[34]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[35]  Sophie Schirmer,et al.  Robust quantum gates for open systems via optimal control: Markovian versus non-Markovian dynamics , 2011, 1107.4358.

[36]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[37]  Felix Motzoi,et al.  High-fidelity quantum gates in the presence of dispersion , 2012 .

[38]  Multiple-spin coherence transfer in linear Ising spin chains and beyond: Numerically optimized pulses and experiments , 2011, 1110.5262.

[39]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[40]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[41]  Burkhard Luy,et al.  Exploring the limits of broadband 90° and 180° universal rotation pulses. , 2012, Journal of magnetic resonance.

[42]  G. C. Hegerfeldt,et al.  Driving at the quantum speed limit: optimal control of a two-level system. , 2013, Physical review letters.

[43]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[44]  T. S. Mahesh,et al.  Efficient simulation of unitary operators by combining two numerical algorithms: An NMR simulation of the mirror-inversion propagator of an XY spin chain , 2014 .

[45]  Matthew D. Grace,et al.  Characterization of control noise effects in optimal quantum unitary dynamics , 2014, 1405.5950.

[46]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[47]  Barry C. Sanders,et al.  Evolutionary Algorithms for Hard Quantum Control , 2014, 1403.0943.

[48]  F. K. Wilhelm,et al.  Optimized controlled-Z gates for two superconducting qubits coupled through a resonator , 2013, 1306.6894.

[49]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[50]  Tommaso Calarco,et al.  Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape , 2015, 1506.04601.

[51]  S. Ashhab Quantum state transfer in a disordered one-dimensional lattice , 2015, 1510.00700.

[52]  Dmitry V. Zhdanov,et al.  Role of control constraints in quantum optimal control , 2015 .

[53]  Ilya Kuprov,et al.  Auxiliary matrix formalism for interaction representation transformations, optimal control, and spin relaxation theories. , 2015, The Journal of chemical physics.

[54]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[55]  Ilya Kuprov,et al.  Modified Newton-Raphson GRAPE methods for optimal control of spin systems. , 2015, The Journal of chemical physics.

[56]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[57]  Jay M. Gambetta,et al.  Universal Gate for Fixed-Frequency Qubits via a Tunable Bus , 2016, 1604.03076.

[58]  G. Wendin Quantum information processing with superconducting circuits: a review , 2016, Reports on progress in physics. Physical Society.

[59]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[60]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[61]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[62]  Martin Larocca,et al.  Quantum control landscape for a two-level system near the quantum speed limit , 2018, Journal of Physics A: Mathematical and Theoretical.

[63]  Per J. Liebermann,et al.  Optimized cross-resonance gate for coupled transmon systems , 2017, 1701.01841.

[64]  F. Wilhelm,et al.  Counteracting systems of diabaticities using DRAG controls: The status after 10 years , 2018, EPL (Europhysics Letters).

[65]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[66]  Jacob Sherson,et al.  Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates , 2018, Physical Review A.

[67]  A. F. Kockum,et al.  Deep Q-learning decoder for depolarizing noise on the toric code , 2019, Physical Review Research.

[68]  Felix Motzoi,et al.  Global optimization of quantum dynamics with AlphaZero deep exploration , 2019, npj Quantum Information.

[69]  Jens Jakob W. H. Sørensen,et al.  QEngine: A C++ library for quantum optimal control of ultracold atoms , 2018, Comput. Phys. Commun..

[70]  Jesper Hasseriis Mohr Jensen,et al.  Time-optimal control of collisional SWAP gates in ultracold atomic systems , 2019, Physical Review A.

[71]  Zheng An,et al.  Deep reinforcement learning for quantum gate control , 2019, EPL (Europhysics Letters).

[72]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[73]  Optimization of pulses with low bandwidth for improved excitation of multiple-quantum coherences in NMR of quadrupolar nuclei. , 2019, The Journal of chemical physics.

[74]  H. Rabitz,et al.  Robust quantum control in games: An adversarial learning approach , 2019, 1909.02296.

[75]  Universal gates for protected superconducting qubits using optimal control , 2019, Physical Review A.

[76]  Jay M. Gambetta,et al.  Effective Hamiltonian models of the cross-resonance gate , 2018, Physical Review A.

[77]  Yebin Wang,et al.  Time-optimal control of a dissipative qubit , 2020, Physical Review A.