PBH formation in EFT of single field inflation with sharp transition

[1]  A. Riotto,et al.  How Well Do We Know the Primordial Black Hole Abundance? The Crucial Role of Non-Linearities when Approaching the Horizon , 2023, 2307.13633.

[2]  S. Choudhury,et al.  Primordial non-Gaussianity from ultra slow-roll Galileon inflation , 2023, Journal of Cosmology and Astroparticle Physics.

[3]  K. Ng,et al.  Primordial perturbations from ultra-slow-roll single-field inflation with quantum loop effects , 2023, 2305.16810.

[4]  M. Taoso,et al.  One loop to rule them all: Perturbativity in the presence of ultra slow-roll dynamics , 2023, 2305.03491.

[5]  A. Riotto,et al.  Primordial Black Holes and loops in single-field inflation , 2023, Journal of Cosmology and Astroparticle Physics.

[6]  S. Choudhury,et al.  Galileon inflation evades the no-go for PBH formation in the single-field framework , 2023, Journal of Cosmology and Astroparticle Physics.

[7]  Y. Tada,et al.  Squeezed bispectrum and one-loop corrections in transient constant-roll inflation , 2023, Journal of Cosmology and Astroparticle Physics.

[8]  H. Firouzjahi One-loop Corrections in Power Spectrum in Single Field Inflation , 2023, 2303.12025.

[9]  S. Choudhury,et al.  Quantum loop effects on the power spectrum and constraints on primordial black holes , 2023, Journal of Cosmology and Astroparticle Physics.

[10]  A. Riotto The Primordial Black Hole Formation from Single-Field Inflation is Still Not Ruled Out , 2023, 2303.01727.

[11]  J. Yokoyama,et al.  Response to criticism on"Ruling Out Primordial Black Hole Formation From Single-Field Inflation'': A note on bispectrum and one-loop correction in single-field inflation with primordial black hole formation , 2023, 2303.00341.

[12]  S. Choudhury,et al.  No-go for the formation of heavy mass Primordial Black Holes in Single Field Inflation , 2023, 2301.10000.

[13]  A. Riotto The Primordial Black Hole Formation from Single-Field Inflation is Not Ruled Out , 2023, 2301.00599.

[14]  J. Yokoyama,et al.  Ruling Out Primordial Black Hole Formation From Single-Field Inflation , 2022, 2211.03395.

[15]  R. Holman,et al.  Loop corrections in Minkowski spacetime away from equilibrium. Part I. Late-time resummations , 2022, Journal of High Energy Physics.

[16]  R. Holman,et al.  Loop corrections in Minkowski spacetime away from equilibrium. Part II. Finite-time results , 2022, Journal of High Energy Physics.

[17]  A. Riotto,et al.  Threshold for primordial black holes. II. A simple analytic prescription , 2021 .

[18]  V. Sahni,et al.  Primordial black holes from a tiny bump/dip in the inflaton potential , 2019, Journal of Cosmology and Astroparticle Physics.

[19]  Thomas Hartman,et al.  Dynamical constraints on RG flows and cosmology , 2019, Journal of High Energy Physics.

[20]  M. Peloso,et al.  The ineludible non-Gaussianity of the primordial black hole abundance , 2019, Journal of Cosmology and Astroparticle Physics.

[21]  C. Byrnes,et al.  Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation , 2019, Journal of Cosmology and Astroparticle Physics.

[22]  I. Musco Threshold for primordial black holes: Dependence on the shape of the cosmological perturbations , 2018, Physical Review D.

[23]  Takahiro Tanaka,et al.  Primordial black holes—perspectives in gravitational wave astronomy , 2018, 1801.05235.

[24]  S. Choudhury CMB from EFT , 2017, 1712.04766.

[25]  T. Yanagida,et al.  Primordial black holes as dark matter in supergravity inflation models , 2016, 1606.07631.

[26]  Z. Xianyu,et al.  Loop Corrections to Standard Model fields in inflation , 2016, 1604.07841.

[27]  Chul-Moon Yoo,et al.  Cosmological long-wavelength solutions and primordial black hole formation , 2015, 1503.03934.

[28]  A. Mazumdar,et al.  Primordial blackholes and gravitational waves for an inflection-point model of inflation , 2013, 1307.5119.

[29]  D. Seery,et al.  The δN formula is the dynamical renormalization group , 2012, 1210.7800.

[30]  Xingang Chen Primordial Non-Gaussianities from Inflation Models , 2010, 1002.1416.

[31]  S. Shandera,et al.  Super-Hubble de Sitter fluctuations and the dynamical RG , 2009, 0912.1608.

[32]  Yi Wang,et al.  Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.

[33]  S. Weinberg Effective field theory for inflation , 2008, 0804.4291.

[34]  R. Easther,et al.  Large non-Gaussianities in single-field inflation , 2006, astro-ph/0611645.

[35]  Gary Shiu,et al.  Observational signatures and non-Gaussianities of general single-field inflation , 2006, hep-th/0605045.

[36]  D. Boyanovsky,et al.  Dynamical renormalization group approach to relaxation in quantum field theory , 2003, hep-ph/0302055.

[37]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[38]  D. Boyanovsky,et al.  Dynamical renormalization group approach to the Altarelli-Parisi-Lipatov equations , 2001, hep-ph/0108180.

[39]  D. Boyanovsky,et al.  Dynamical renormalization group resummation of finite temperature infrared divergences , 1998, hep-ph/9809346.

[40]  Carr,et al.  Primordial black holes and generalized constraints on chaotic inflation. , 1993, Physical review. D, Particles and fields.

[41]  B. Carr The Primordial black hole mass spectrum , 1975 .

[42]  G. Chapline,et al.  Cosmological effects of primordial black holes , 1975, Nature.

[43]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[44]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.