On the connectivity and diameter of small-world networks
暂无分享,去创建一个
[1] J. Dall,et al. Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] M. Penrose. The longest edge of the random minimal spanning tree , 1997 .
[3] A. Rbnyi. ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .
[4] P. Erdos,et al. On the evolution of random graphs , 1984 .
[5] Piyush Gupta,et al. Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .
[6] Jon M. Kleinberg,et al. The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.
[7] T. Lindvall. Lectures on the Coupling Method , 1992 .
[8] Panganamala Ramana Kumar,et al. The Number of Neighbors Needed for Connectivity of Wireless Networks , 2004, Wirel. Networks.
[9] B. Bollobás,et al. Connectivity of random k-nearest-neighbour graphs , 2005, Advances in Applied Probability.
[10] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[11] Neil O'Connell,et al. Review: Torgny Lindvall, Lectures on the Coupling Method , 1995 .
[12] B. Bollobás. The evolution of random graphs , 1984 .
[13] I. Balberg. Continuum Percolation , 2009, Encyclopedia of Complexity and Systems Science.
[14] Béla Bollobás,et al. Random Graphs: Notation , 2001 .
[15] David Gamarnik,et al. The diameter of a long range percolation graph , 2002, SODA '02.