On the connectivity and diameter of small-world networks

We consider two different models of small-world graphs on nodes whose locations are modelled by a stochastic point process. In the first model each node is connected to a fixed number of its nearest neighbours, while in the second model each node is connected to all nodes located within some fixed distance. In both models, nodes are additionally connected via shortcuts to other nodes chosen uniformly at random. We obtain sufficient conditions for connectivity in the first model, and necessary conditions in the second model. Thereby, we show that connectivity is achieved at a smaller value of total degree (nearest neighbours plus shortcuts) in the first model. We also obtain bounds on the diameter of the graph in this model.