Insights on the Thermal Stability of the Sb 2 Se 3 Quasi‐1D Photovoltaic Technology

[1]  Xinsheng Liu,et al.  Facile Sb2Se3 and Se co-selenization process improves the performance of Cu2ZnSnSe4 solar cells , 2021 .

[2]  M. Green,et al.  Solar cell efficiency tables (version 57) , 2020, Progress in Photovoltaics: Research and Applications.

[3]  Qi Chen,et al.  Towards commercialization: the operational stability of perovskite solar cells. , 2020, Chemical Society reviews.

[4]  Tao Chen,et al.  Manipulating the Electrical Properties of Sb2(S,Se)3 Film for High‐Efficiency Solar Cell , 2020, Advanced Energy Materials.

[5]  Hong-li Ma,et al.  An effective combination reaction involved with sputtered and selenized Sb precursors for efficient Sb2Se3 thin film solar cells , 2020, Chemical Engineering Journal.

[6]  M. Green,et al.  Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency , 2020, Nature Energy.

[7]  M. Marques,et al.  Advanced Raman spectroscopy of Cs2AgBiBr6 double perovskites and identification of Cs3Bi2Br9 secondary phases , 2020 .

[8]  Shin Woei Leow,et al.  In Situ Growth of [hk1]‐Oriented Sb2S3 for Solution‐Processed Planar Heterojunction Solar Cell with 6.4% Efficiency , 2020, Advanced Functional Materials.

[9]  Jiang Tang,et al.  In situ investigation of interfacial properties of Sb2Se3 heterojunctions , 2020 .

[10]  M. Placidi,et al.  Efficient Se‐Rich Sb 2 Se 3 /CdS Planar Heterojunction Solar Cells by Sequential Processing: Control and Influence of Se Content , 2020, Solar RRL.

[11]  D. Scanlon,et al.  Identifying Raman modes of Sb2Se3 and their symmetries using angle-resolved polarised Raman spectra , 2020, Journal of Materials Chemistry A.

[12]  X. Zu,et al.  A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells , 2020 .

[13]  Q. Ramasse,et al.  Evidence for self-healing benign grain boundaries and a highly defective Sb2Se3-CdS interfacial layer in Sb2Se3 thin-film photovoltaics. , 2020, ACS applied materials & interfaces.

[14]  M. Placidi,et al.  Structural and vibrational properties of α- and π-SnS polymorphs for photovoltaic applications , 2020, Acta Materialia.

[15]  W. Jo,et al.  Point defects, compositional fluctuations, and secondary phases in non-stoichiometric kesterites , 2019, Journal of Physics: Energy.

[16]  A. Romeo,et al.  Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation , 2019, Solar Energy.

[17]  Stacy Gates-Rector,et al.  The Powder Diffraction File: a quality materials characterization database , 2019, Powder Diffraction.

[18]  Y. Fu,et al.  Highly efficient and stable planar heterojunction solar cell based on sputtered and post-selenized Sb2Se3 thin film , 2019, Nano Energy.

[19]  Jiang Tang,et al.  Orientation Engineering in Low‐Dimensional Crystal‐Structural Materials via Seed Screening , 2019, Advanced materials.

[20]  M. Placidi,et al.  Multiwavelength excitation Raman scattering study of Sb2Se3 compound: fundamental vibrational properties and secondary phases detection , 2019, 2D Materials.

[21]  M. Placidi,et al.  CuZnInSe3‐based solar cells: Impact of copper concentration on vibrational and structural properties and device performance , 2019, Progress in Photovoltaics: Research and Applications.

[22]  Jiang Tang,et al.  Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3. , 2019, ACS applied materials & interfaces.

[23]  Jiang Tang,et al.  Alternative back contacts for Sb2Se3 solar cells , 2019, Solar Energy.

[24]  D. Scanlon,et al.  Current Enhancement via a TiO2 Window Layer for CSS Sb2Se3 Solar Cells: Performance Limits and High Voc , 2019, IEEE Journal of Photovoltaics.

[25]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[26]  R. Schropp,et al.  9.2%-efficient core-shell structured antimony selenide nanorod array solar cells , 2019, Nature Communications.

[27]  Tao Chen,et al.  Over 6% Certified Sb2(S,Se)3 Solar Cells Fabricated via In Situ Hydrothermal Growth and Postselenization , 2018, Advanced Electronic Materials.

[28]  Zhigao Hu,et al.  Improving the efficiency of Sb2Se3 thin-film solar cells by post annealing treatment in vacuum condition , 2018, Solar Energy Materials and Solar Cells.

[29]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[30]  B. Vermang,et al.  On the identification of Sb_2Se_3 using Raman scattering , 2018 .

[31]  Jiang Tang,et al.  Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation , 2018, Nano Energy.

[32]  Guangda Niu,et al.  Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency , 2018, Nature Communications.

[33]  A. Pérez‐Rodríguez,et al.  Understanding the cell-to-module efficiency gap in Cu(In,Ga)(S,Se)2 photovoltaics scale-up , 2018, Nature Energy.

[34]  Jie Ji,et al.  Comparison study of the performance of two kinds of photovoltaic/thermal(PV/T) systems and a PV module at high ambient temperature , 2018 .

[35]  Jiang Tang,et al.  Buried homojunction in CdS/Sb2Se3 thin film photovoltaics generated by interfacial diffusion , 2017 .

[36]  Liang Gao,et al.  Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer , 2017, Nature Energy.

[37]  Liang Gao,et al.  Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics , 2017 .

[38]  A. Pérez‐Rodríguez,et al.  Raman scattering analysis of the surface chemistry of kesterites: Impact of post-deposition annealing and Cu/Zn reordering on solar cell performance , 2016 .

[39]  M. Placidi,et al.  The importance of back contact modification in Cu2ZnSnSe4 solar cells: The role of a thin MoO2 layer , 2016 .

[40]  A. Pérez‐Rodríguez,et al.  Impact of Na Dynamics at the Cu2ZnSn(S,Se)4/CdS Interface During Post Low Temperature Treatment of Absorbers. , 2016, ACS applied materials & interfaces.

[41]  M. Placidi,et al.  Optimization of CdS buffer layer for high‐performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink , 2015 .

[42]  M. Placidi,et al.  Complex Surface Chemistry of Kesterites: Cu/Zn Reordering after Low Temperature Postdeposition Annealing and Its Role in High Performance Devices , 2015 .

[43]  Jiang Tang,et al.  Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries , 2015, Nature Photonics.

[44]  T. Minemoto,et al.  Impact of annealing treatment before buffer layer deposition on Cu2ZnSn(S,Se)4 solar cells , 2015 .

[45]  Jiang Tang,et al.  Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. , 2014, ACS applied materials & interfaces.

[46]  Dong Uk Lee,et al.  Highly Improved Sb2S3 Sensitized‐Inorganic–Organic Heterojunction Solar Cells and Quantification of Traps by Deep‐Level Transient Spectroscopy , 2014 .

[47]  A. Walsh,et al.  Electronic Structures of Antimony Oxides , 2013 .

[48]  Simon Parsons,et al.  The TOPAS symbolic computation system , 2011, Powder Diffraction.

[49]  P. Whitfield Spherical harmonics preferential orientation corrections and structure solution from powder diffraction data – a possible avenue of last resort , 2009 .

[50]  David Faiman,et al.  Assessing the outdoor operating temperature of photovoltaic modules , 2008 .

[51]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[52]  D. Balzar,et al.  Size–strain line-broadening analysis of the ceria round-robin sample , 2004 .

[53]  A. Milekhin,et al.  Resonant Raman studies of compositional and size dispersion of CdS1−xSex nanocrystals in a glass matrix , 2004 .

[54]  S. Yannopoulos,et al.  Raman scattering study on structural and dynamical features of noncrystalline selenium. , 2004, The Journal of chemical physics.

[55]  J. Cline,et al.  Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers , 2004, Journal of Research of the National Institute of Standards and Technology.

[56]  L. Kronik,et al.  Oxygenation and air-annealing effects on the electronic properties of Cu(In,Ga)Se2 films and devices , 1999 .

[57]  M. Ivanda,et al.  Linear and Nonlinear Raman Studies on CdSxSe1-x Doped Glasses , 1996 .

[58]  M. Sekkina Novel investigations on thermogravimetric and differential thermal analyses of elemental, compound and mixed semiconductors , 1988 .

[59]  L. Dicarlo,et al.  Vibrational and thermal study of antimony oxides , 1979 .

[60]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[61]  M. M. Abou Sekkina Novel investigations on thermogravimetric and differential thermal analyses of elemental, compound and mixed semiconductors , 1988 .