A Statistical Study of Sn Whisker Population and Growth During Elevated Temperature and Humidity Tests
暂无分享,去创建一个
Storage tests at elevated temperature and humidity conditions have been widely adopted as one of the major acceleration tests for Sn whisker growth. However, the driving force associated and the nucleation and growth process of whiskers are yet to be fully understood. In this paper, Sn whisker growth on Cu leadframe material at two different test conditions is compared. Both loose and board-mounted components were used. At each read point, the length and location of every whisker observed was recorded. Statistical characteristics and growth rate of the whisker population will be presented for each of the tests conditions. On loose components, corrosion of the Sn finish was observed near the tip and the dam bar cut area of the leads with backscatter scanning electron microscopy (SEM) and optical microscopy. The entire population of whiskers was located in these corroded areas, and there were zero whiskers located in the noncorroded areas on the same leads. On board-mounted components, the corrosion level of the Sn finish, as well as the whisker population and length was greatly reduced compared to those on the loose components. These results suggest that the corrosion of Sn finish in high-temperature and high-humidity conditions is the major driving force for whisker growth. The cause for the difference between the loose and board-mounted components is also analyzed
[1] Peng Su,et al. Effects of reflow on the microstructure and whisker growth propensity of Sn finish , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..