Contact Representations of Planar Graphs: Extending a Partial Representation is Hard

Planar graphs are known to have geometric representations of various types, e.g. as contacts of disks, triangles or - in the bipartite case - vertical and horizontal segments. It is known that such representations can be drawn in linear time, we here wonder whether it is as easy to decide whether a partial representation can be completed to a representation of the whole graph. We show that in each of the cases above, this problem becomes NP-hard. These are the first classes of geometric graphs where extending partial representations is provably harder than recognition, as opposed to e.g. interval graphs, circle graphs, permutation graphs or even standard representations of plane graphs.

[1]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[2]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[3]  Pavel Klavík,et al.  Extending Partial Representations of Interval Graphs , 2011, TAMC.

[4]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[5]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[6]  Dániel Marx NP-completeness of list coloring and precoloring extension on the edges of planar graphs , 2005 .

[7]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[8]  Yota Otachi,et al.  Extending partial representations of subclasses of chordal graphs , 2015, Theor. Comput. Sci..

[9]  Jirí Fiala NP completeness of the edge precoloring extension problem on bipartite graphs , 2003, J. Graph Theory.

[10]  Alan C. Tucker,et al.  An Efficient Test for Circular-Arc Graphs , 1980, SIAM J. Comput..

[11]  Yota Otachi,et al.  Extending Partial Representations of Proper and Unit Interval Graphs , 2012, Algorithmica.

[12]  Leah Epstein,et al.  Algorithms – ESA 2012 , 2012, Lecture Notes in Computer Science.

[13]  G. Battista,et al.  Hierarchies and planarity theory , 1988, IEEE Trans. Syst. Man Cybern..

[14]  Michael Jünger,et al.  Level Planarity Testing in Linear Time , 1998, Graph Drawing.

[15]  Michael R. Fellows,et al.  The complexity of induced minors and related problems , 1995, Algorithmica.

[16]  Yota Otachi,et al.  Extending Partial Representations of Subclasses of Chordal Graphs , 2012, ISAAC.

[17]  Bojan Mohar,et al.  A polynomial time circle packing algorithm , 1993, Discret. Math..

[18]  Pavel Klavík,et al.  Extending Partial Representations of Function Graphs and Permutation Graphs , 2012, ESA.

[19]  Ilan Newman,et al.  On grid intersection graphs , 1991, Discret. Math..

[20]  Marcus Schaefer,et al.  Complexity of Some Geometric and Topological Problems , 2009, GD.

[21]  Inge Li Gørtz,et al.  Algorithm Theory – SWAT 2014 , 2014, Lecture Notes in Computer Science.

[22]  André Bouchet,et al.  Reducing prime graphs and recognizing circle graphs , 1987, Comb..

[23]  Pavel Klavík,et al.  Extending Partial Representations of Circle Graphs , 2013, Graph Drawing.

[24]  Pavel Klav ´ ik Extending Partial Representations of Interval Graphs , 2012 .

[25]  J. Pach,et al.  Representation of planar graphs by segments , 1994 .

[26]  Patrice Ossona de Mendez,et al.  On Triangle Contact Graphs , 1994, Combinatorics, Probability and Computing.

[27]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[28]  Jan Kratochvíl,et al.  Testing planarity of partially embedded graphs , 2010, SODA '10.