Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
暂无分享,去创建一个
[1] Frank Merle,et al. On uniqueness and continuation properties after blow‐up time of self‐similar solutions of nonlinear schrödinger equation with critical exponent and critical mass , 1992 .
[2] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[3] STABILITY OF ENERGY-CRITICAL NONLINEAR SCHR¨ ODINGER EQUATIONS IN HIGH DIMENSIONS , 2005, math/0507005.
[4] F. Merle,et al. Compactness at blow-up time for L2 solutions of the critical nonlinear Schrödinger equation in 2D , 1998 .
[5] M. Visan,et al. Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in R 1+4 , 2007 .
[6] Sahbi Keraani,et al. On the blow up phenomenon of the critical nonlinear Schrödinger equation , 2006 .
[7] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[8] M. Weinstein. Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .
[9] Thierry Cazenave,et al. The Cauchy problem for the nonlinear Schrödinger equation in H1 , 1988 .
[10] R. Glassey. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .
[11] P. Gérard. Description of the lack of compactness for the Sobolev imbedding , 1998 .
[12] Yoshio Tsutsumi,et al. L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity , 1990 .
[13] G. Talenti,et al. Best constant in Sobolev inequality , 1976 .
[14] Frank Merle,et al. Existence of blow-up solutions in the energy space for the critical generalized KdV equation , 2001 .
[15] T. Aubin. Equations differentielles non lineaires et probleme de Yamabe concernant la courbure scalaire , 1976 .
[16] S. Keraani. On the Defect of Compactness for the Strichartz Estimates of the Schrödinger Equations , 2001 .
[17] Takayoshi Ogawa,et al. Blow-up of H1 solution for the nonlinear Schrödinger equation , 1991 .
[18] F. Merle,et al. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .
[19] Jean Bourgain,et al. Global Solutions of Nonlinear Schrodinger Equations , 1999 .
[20] Global well-posedness and scattering for the energy-critical nonlinear Schr\"odinger equation in R^3 , 2004, math/0402129.
[21] Jian Zhang. Sharp conditions of global existence for nonlinear Schrödinger and Klein--Gordon equations , 2002 .
[22] Manoussos G Grillakis. On nonlinear schrödinger equations , 2000 .
[23] M. Visan. The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions , 2005, math/0508298.
[24] P. Gérard,et al. High frequency approximation of solutions to critical nonlinear wave equations , 1999 .
[25] Y. Meyer,et al. Inégalités de Sobolev précisées , 1997 .
[26] Thierry Cazenave,et al. The Cauchy problem for the critical nonlinear Schro¨dinger equation in H s , 1990 .
[27] Global well-posedness and scattering for the higher-dimensional energy-critical non-linear Schrodinger equation for radial data , 2004, math/0402130.