Hyperprojective hierarchy of qcb0-spaces

We extend the Luzin hierarchy of qcb0-spaces introduced in [ScS13] to all countable ordinals, obtaining in this way the hyperprojective hierarchy of qcb0-spaces. We generalize all main results of [ScS13] to this larger hierarchy. In particular, we extend the Kleene-Kreisel continuous functionals of finite types to the continuous functionals of countable types and relate them to the new hierarchy. We show that the category of hyperprojective qcb0-spaces has much better closure properties than the category of projective qcb0-space. As a result, there are natural examples of spaces that are hyperprojective but not projective.

[1]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[2]  Victor L. Selivanov,et al.  Some hierarchies of QCB 0-spaces , 2013, Mathematical Structures in Computer Science.

[3]  Victor L. Selivanov,et al.  Total Representations , 2013, Log. Methods Comput. Sci..

[4]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[5]  Matthew de Brecht Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..

[6]  Matthias Schröder,et al.  The sequential topology on is not regular , 2009, Mathematical Structures in Computer Science.

[7]  Victor L. Selivanov,et al.  Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..

[8]  J. Lawson,et al.  Comparing Cartesian closed categories of (core) compactly generated spaces , 2004 .

[9]  Douglas S. Bridges,et al.  Constructivity in Mathematics , 2004 .

[10]  Matthias Schröder,et al.  Extended admissibility , 2002, Theor. Comput. Sci..

[11]  Dag Normann,et al.  Countable functionals and the projective hierarchy , 1981, Journal of Symbolic Logic.

[12]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[13]  J. Hyland,et al.  Filter spaces and continuous functionals , 1979 .

[14]  Alexander S. Kechris,et al.  Games, Scales, and Suslin Cardinals: The Cabal Seminar, Volume I: Suslin cardinals, k -Suslin sets, and the scale property in the hyperprojective hierarchy , 2008 .

[15]  Diplom-Informatiker Matthias Schroder,et al.  Admissible representations for continuous computations , 2002 .

[16]  Dag Normann,et al.  The Continuous Functionals , 1999, Handbook of Computability Theory.

[17]  A. Kechris Classical descriptive set theory , 1987 .

[18]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[19]  Alexander S. Kechris,et al.  Souslin cardinals, κ-souslin sets and the scale property in the hyperprojective hierarchy , 1981 .

[20]  D. Normann Recursion on the countable functionals , 1980 .