Practical Realization of Tunable Fractional Order Parallel Resonator and Fractional Order Filters

This paper introduces a tunable fractional order parallel resonator (FOPR) whose resonating frequency can be tuned by the coefficient of a fractional order (FO) element (fractor). At the same time, its Q-factor can be set very high (theoretically infinite) by varying its resistor. Using this FOPR circuit, two simple FO filters (FO bandpass and FO notch) are also developed. The paper includes detail sensitivity analyses of these circuits for various circuit parameters and describes how different design parameters of proposed FOPR and FO filters are chosen accordingly. Proposed FOPR and FO filters are simulated in MATLAB and realized in hardware. The hardware circuits are tested practically, and detail experimental results are provided. It is found that the experimental data are in good agreement with the simulation data. In hardware, the realized FOPR has achieved a Q-factor up to 360, and the realized FO notch filter has Q > 10 when its attenuation is more than 30 dB. Different practical aspects of filter tuning are also described in detail.

[1]  Isabel S. Jesus,et al.  Fractional Electrical Impedances in Botanical Elements , 2008 .

[2]  M. Darouach,et al.  Design of functional fractional-order observers for linear time-delay fractional-order systems in the time domain , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[3]  Leonard T. Bruton RC-Active Circuits. Theory and Design , 1980 .

[4]  Karabi Biswas,et al.  Realization of a carbon nanotube based electrochemical fractor , 2015, 2015 IEEE International Symposium on Circuits and Systems (ISCAS).

[5]  Luigi Fortuna,et al.  Non-integer order integration by using neural networks , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[6]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[7]  Ahmed M. Soliman,et al.  Fractional Order Sallen–Key and KHN Filters: Stability and Poles Allocation , 2015, Circuits Syst. Signal Process..

[8]  Karabi Biswas,et al.  Design and Performance Study of Dynamic Fractors in Any of the Four Quadrants , 2016, Circuits Syst. Signal Process..

[9]  R. J. Harris The design of an operational amplifier notch filter , 1968 .

[10]  Karabi Biswas,et al.  Use of squared magnitude function in approximation and hardware implementation of SISO fractional order system , 2013, J. Frankl. Inst..

[11]  Todd J. Freeborn,et al.  A Survey of Fractional-Order Circuit Models for Biology and Biomedicine , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[12]  Ahmed S. Elwakil,et al.  Emulation of a constant phase element using operational transconductance amplifiers , 2015 .

[13]  S. Westerlund,et al.  Capacitor theory , 1994 .

[14]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[15]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[16]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[17]  Karabi Biswas,et al.  A Design Example of a Fractional-Order Kerwin–Huelsman–Newcomb Biquad Filter with Two Fractional Capacitors of Different Order , 2013, Circuits Syst. Signal Process..

[18]  A. Elwakil,et al.  On the stability of linear systems with fractional-order elements , 2009 .

[19]  Mohammad Saleh Tavazoei,et al.  Realizability of Fractional-Order Impedances by Passive Electrical Networks Composed of a Fractional Capacitor and RLC Components , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[21]  Karabi Biswas,et al.  Realization of a Constant Phase Element and Its Performance Study in a Differentiator Circuit , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[23]  G. Bohannan Analog Fractional Order Controller in Temperature and Motor Control Applications , 2008 .

[24]  T. M. Nahir,et al.  Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed Edited by Evgenij Barsoukov (Texas Instruments Inc.) and J. Ross Macdonald (University of North Carolina, Chapel Hill). John Wiley & Sons, Inc.: Hoboken, NJ. 2005. xvii + 596 pp. $125.00. ISBN 0471-64749-7. , 2005 .

[25]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[26]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[27]  YangQuan Chen,et al.  A Fractional Adaptation Scheme for Lateral Control of an AGV , 2008 .

[28]  Ahmed M. Soliman,et al.  Fractional order filter with two fractional elements of dependant orders , 2012, Microelectron. J..

[29]  Khaled N. Salama,et al.  Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites , 2013 .

[30]  K. B. Oldham,et al.  Analogue instrumentation for processing polarographic data , 1983 .

[31]  T. Freeborn,et al.  Approximated Fractional Order Chebyshev Lowpass Filters , 2015 .

[32]  Necati Özdemir,et al.  Fractional Order Control of Fractional Diffusion Systems Subject to Input Hysteresis , 2010 .

[33]  Juraj Valsa,et al.  Conceptual design of a selectable fractional-order differentiator for industrial applications , 2014 .

[34]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional Circuit , 2011 .

[35]  Chien-Cheng Tseng,et al.  Design of FIR and IIR fractional order Simpson digital integrators , 2007, Signal Process..

[36]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[37]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Debasmita Mondal,et al.  Design and performance study of phase‐locked loop using fractional‐order loop filter , 2015, Int. J. Circuit Theory Appl..

[39]  A. G. Radwan,et al.  Resonance and Quality Factor of the $RL_{\alpha} C_{\alpha}$ Fractional Circuit , 2013, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[40]  Debasmita Mondal,et al.  Experimental studies on realization of fractional inductors and fractional‐order bandpass filters , 2015, Int. J. Circuit Theory Appl..

[41]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[42]  R. Caponetto,et al.  Experimental Characterization of Ionic Polymer Metal Composite as a Novel Fractional Order Element , 2013 .

[43]  Khaled N. Salama,et al.  The fractional-order modeling and synchronization of electrically coupled neuron systems , 2012, Comput. Math. Appl..

[44]  D. Mondal,et al.  Packaging of Single-Component Fractional Order Element , 2013, IEEE Transactions on Device and Materials Reliability.

[45]  Ahmed S. Elwakil,et al.  Cole impedance extractions from the step-response of a current excited fruit sample , 2013 .

[46]  Costas Psychalinos,et al.  Ultra‐low voltage fractional‐order circuits using current mirrors , 2016, Int. J. Circuit Theory Appl..

[47]  K. Salama,et al.  Theory of Fractional Order Elements Based Impedance Matching Networks , 2011, IEEE Microwave and Wireless Components Letters.

[48]  K. Biswas,et al.  Performance study of fractional order integrator using single-component fractional order element , 2011, IET Circuits Devices Syst..

[49]  Brent Maundy,et al.  Design of fractional notch filter with asymmetric slopes and large values of notch magnitude , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[50]  G. Ablart,et al.  Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon , 2005 .