Collection of benchmark test problems for data reconciliation and gross error detection and identification

Abstract In an industrial scenario, one can find measured data that do not satisfy the mass and energy laws of conservation. This problem can be approached by applying data reconciliation (DR) and gross error detection and identification (GEDI) techniques, however, authors generally validate their methods using a reduced set of problems, restricting the application of the proposed methods to them. The objective of this work is to present a collection of benchmark problems for DR and GEDI to help the evaluation of these methods in different types of flowsheets. First, challenges issues related with DR and GED are presented with examples. Then, a general overview of the benchmark collection set is presented. In conclusion, it can be observed that this challenging research area needs a common problem set for validating DR and GEDI and this paper fills this gap, helping the validation of the methods.

[1]  Richard S. H. Mah,et al.  Generalized likelihood ratio method for gross error identification , 1987 .

[2]  Jeffrey Dean Kelly,et al.  Techniques for solving industrial nonlinear data reconciliation problems , 2004, Comput. Chem. Eng..

[3]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[4]  Vladimír Rod,et al.  Iterative estimation of model parameters when measurements of all variables are subject to error , 1980 .

[5]  Stephen B. Vardeman,et al.  Likelihood and Bayesian Methods for Accurate Identification of Measurement Biases in Pseudo Steady-State Processes , 2005 .

[6]  Derrick K. Rollins,et al.  Accurate Identification of Biased Measurements Under Serial Correlation , 2000 .

[7]  Derrick K. Rollins,et al.  Intelligent selection of hypothesis tests to enhance gross error identification , 1996 .

[8]  L. Biegler,et al.  Redescending estimators for data reconciliation and parameter estimation , 2001 .

[9]  Jeffrey D. Kelly,et al.  A Steady-State Detection (SSD) Algorithm to Detect Non-Stationary Drifts in Processes , 2013 .

[10]  Shankar Narasimhan,et al.  A method to incorporate bounds in data reconciliation and gross error detection—II. Gross error detection strategies , 1993 .

[11]  C. M. Crowe,et al.  Data reconciliation — Progress and challenges , 1996 .

[12]  R. Maronna,et al.  Robust Estimators for Data Reconciliation , 2015 .

[13]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[14]  Tyler A. Soderstrom,et al.  A mixed integer optimization approach for simultaneous data reconciliation and identification of measurement bias , 2000 .

[15]  Jeffrey D. Kelly,et al.  On finding the matrix projection in the data reconciliation solution , 1998 .

[16]  Xi Chen,et al.  Quasi-weighted least squares estimator for data reconciliation , 2010, Comput. Chem. Eng..

[17]  CHARLES AUDET,et al.  Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..

[18]  C. M. Crowe,et al.  Reconciliation of process flow rates by matrix projection. Part II: The nonlinear case , 1983 .

[19]  Ajit C. Tamhane,et al.  Data Reconciliation and Gross Error Detection in Chemical Process Networks , 1985 .

[20]  Weifeng Chen,et al.  Random Sampling-Based Automatic Parameter Tuning for Nonlinear Programming Solvers , 2011 .

[21]  R. Serth,et al.  Gross error detection and data reconciliation in steam-metering systems , 1986 .

[22]  Thomas F. Edgar,et al.  Robust error‐in‐variables estimation using nonlinear programming techniques , 1990 .

[23]  L. Biegler,et al.  Decomposition algorithms for on-line estimation with nonlinear DAE models , 1995 .

[24]  T. Edgar,et al.  A sequential error-in-variables method for nonlinear dynamic systems , 1991 .

[25]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[26]  Lorenz T. Biegler,et al.  Reduced successive quadratic programming strategy for errors-in-variables estimation , 1992 .

[28]  J. Romagnoli,et al.  Simultaneous estimation of biases and leaks in process plants , 1999 .

[29]  Fang Wang,et al.  An improved MT-NT method for gross error detection and data reconciliation , 2004, Comput. Chem. Eng..

[30]  Miguel J. Bagajewicz,et al.  Gross error modeling and detection in plant linear dynamic reconciliation , 1998 .

[31]  C. M. Crowe,et al.  The numerical solution of bilinear data reconciliation problems using unconstrained optimization methods , 1998 .

[32]  C. C. David Pai,et al.  Application of broyden's method to reconciliation of nonlinearly constrained data , 1988 .

[33]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[34]  Derrick K. Rollins,et al.  Measurement bias detection in linear dynamic systems , 2002 .

[35]  Junghui Chen,et al.  Simultaneous data reconciliation and gross error detection for dynamic systems using particle filter and measurement test , 2014, Comput. Chem. Eng..

[36]  Lorenz T. Biegler,et al.  A parallel implementation for parameter estimation with implicit models , 1993, Ann. Oper. Res..

[37]  F. Hutter,et al.  ParamILS: an automatic algorithm configuration framework , 2009 .

[38]  L. Biegler,et al.  Simultaneous strategies for data reconciliation and gross error detection of nonlinear systems , 1991 .

[39]  Thomas F. Edgar,et al.  Bias detection and estimation in dynamic data reconciliation , 1994 .

[40]  Diego Martinez Prata,et al.  Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization: Application for an industrial polypropylene reactor , 2009 .

[41]  Francis J. Doyle,et al.  A pulp mill benchmark problem for control: problem description , 2004 .

[42]  Deoki N. Saraf,et al.  Steady-State Identification, Gross Error Detection, and Data Reconciliation for Industrial Process Units , 2004 .

[43]  R. J. MacDonald,et al.  Data reconciliation and parameter estimation in plant performance analysis , 1988 .

[44]  Francis J. Doyle,et al.  A pulp mill benchmark problem for control: application of plantwide control design , 2004 .

[45]  Shankar Narasimhan,et al.  Leak Detection in Networks of Pipelines by the Generalized Likelihood Ratio Method , 1996 .

[46]  Richard S.H. Mah,et al.  Evaluation of schemes for detecting and identifying gross errors in process data , 1987 .

[47]  Jose A. Romagnoli,et al.  Use of orthogonal transformations in data classification-reconciliation , 1996 .

[48]  R. Maronna,et al.  Classification of Systematic Measurement Errors within the Framework of Robust Data Reconciliation , 2017 .

[49]  Performance evaluation of PCA tests for multiple gross error identification , 1999 .

[50]  Ricardo A. Maronna,et al.  Data reconciliation and gross error diagnosis based on regression , 2009, Comput. Chem. Eng..

[51]  Ajit C. Tamhane,et al.  Performance studies of the measurement test for detection of gross errors in process data , 1985 .

[52]  Miguel J. Bagajewicz,et al.  On a strategy of serial identification with collective compensation for multiple gross error estimation in linear steady-state reconciliation , 1999 .

[53]  M. Stadtherr,et al.  Deterministic global optimization for error-in-variables parameter estimation , 2002 .

[54]  Vladimir Mahalec,et al.  Heat exchanger network simulation, data reconciliation & optimization , 2013 .

[55]  Günter Wozny,et al.  Sequential Parameter Estimation for Large-Scale Systems with Multiple Data Sets. 1. Computational Framework , 2003 .

[56]  Su Hongye,et al.  An NT-MT Combined Method for Gross Error Detection and Data Reconciliation , 2006 .

[57]  Thomas J. McAvoy,et al.  A Nonlinear Dynamic Model of a Vinyl Acetate Process , 2003 .

[58]  Wongphaka Wongrat,et al.  Modified genetic algorithm for nonlinear data reconciliation , 2005, Comput. Chem. Eng..

[59]  Shankar Narasimhan,et al.  Comparison of techniques for data reconciliation of multicomponent processes , 1996 .

[60]  P. Rajesh Kanna,et al.  Conjugate heat transfer study of backward-facing step flow – A benchmark problem , 2006 .

[61]  M. Chadli,et al.  Data reconciliation: A robust approach using a contaminated distribution , 2008 .

[62]  Xiaorong He,et al.  Application of steady-state detection method based on wavelet transform , 2003, Comput. Chem. Eng..

[63]  W. H. Leong,et al.  On a physically-realizable benchmark problem in internal natural convection , 1998 .

[64]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[65]  František Madron A new approach to the identification of gross errors in chemical engineering measurements , 1985 .

[66]  Derya B. Özyurt,et al.  Theory and practice of simultaneous data reconciliation and gross error detection for chemical processes , 2004, Comput. Chem. Eng..

[67]  L. Biegler,et al.  Data reconciliation and gross‐error detection for dynamic systems , 1996 .

[68]  Junghui Chen,et al.  Correntropy based data reconciliation and gross error detection and identification for nonlinear dynamic processes , 2015, Comput. Chem. Eng..

[69]  Youqi Yang,et al.  A study of gross error detection and data reconciliation in process industries , 1995 .

[70]  George Stephanopoulos,et al.  Rectification of process measurement data in the presence of gross errors , 1981 .

[71]  James F. Davis,et al.  Unbiased estimation of gross errors in process measurements , 1992 .

[72]  William R. Esposito,et al.  Global Optimization in Parameter Estimation of Nonlinear Algebraic Models via the Error-in-Variables Approach , 1998 .

[73]  H. Akaike A new look at the statistical model identification , 1974 .

[74]  M. Stadtherr,et al.  Reliable nonlinear parameter estimation using interval analysis: error-in-variable approach , 2000 .

[75]  V. N. Reddy,et al.  An Input-Training Neural Network Approach for Gross Error Detection and Sensor Replacement , 1998 .

[76]  Daniel Hodouin,et al.  Data reconciliation and equilibrium constant estimation: Application to copper solvent extraction , 2005 .

[77]  M. Bagajewicz,et al.  Data Reconciliation in Gas Pipeline Systems , 2003 .

[78]  D. E. Simpson,et al.  Reducing the number of unknowns in a constrained minimisation problem—an appliation to material balances , 1988 .

[79]  Meng Liu,et al.  A New Target Function for Robust Data Reconciliation , 2012 .

[80]  C. M. Crowe,et al.  Detecting persistent gross errors by sequential analysis of principal components , 1996 .