Macroscopic constitutive law for Mastic Asphalt Mixtures from multiscale modeling

A well established framework of an uncoupled hierarchical modeling approach is adopted here for the prediction of macroscopic material parameters of the Generalized Leonov (GL) constitutive model intended for the analysis of exible pavements

[1]  Roman Lackner,et al.  Characterization and Multiscale Modeling of Asphalt - Recent Developments in Upscaling of Viscous and Strength Properties , 2006 .

[2]  J. Sejnoha,et al.  Mesoscopic study on historic masonry , 2008 .

[3]  Louay N. Mohammad,et al.  Application of a Temperature Dependent Viscoplastic Hierarchical Single Surface Model for Asphalt Mixtures , 2004 .

[4]  Michal Šejnoha,et al.  Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix , 2001 .

[5]  Mark J. Beran,et al.  Statistical Continuum Theories , 1965 .

[6]  John E. Haddock,et al.  On the characterization of flexible pavement rutting using creep model-based finite element analysis , 2004 .

[7]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[8]  Dinesh Panneerselvam,et al.  Numerical Implementation of a Hyperelastic-Viscoplastic Damage Model for Asphalt Concrete Materials and Pavements , 2005 .

[9]  Anna Kucerová,et al.  Back analysis of microplane model parameters using soft computing methods , 2009, ArXiv.

[10]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[11]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[12]  Imad L. Al-Qadi,et al.  Advanced characterisation of pavement and soil engineering materials: proceedings of the International Conference on Advanced Characterisation of Pavement and Soil Engineering Materials, 20-22 June, 2007, Athens, Greece , 2007 .

[13]  Roman Lackner,et al.  Multiscale Modeling as the Basis for Reliable Predictions of the Behaviour of Multi-Composed Materials , 2004 .

[14]  Y. Benveniste,et al.  On transformation strains and uniform fields in multiphase elastic media , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[15]  Qingli Dai,et al.  A micromechanical finite element model for linear and damage‐coupled viscoelastic behaviour of asphalt mixture , 2006 .

[16]  Anna Kucerová,et al.  Optimal design and optimal control of structures undergoing finite rotations and elastic deformations , 2009, ArXiv.

[17]  Michal Šejnoha,et al.  Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements , 2002 .

[18]  D Whiteoak,et al.  The Shell Bitumen Handbook, 5th Edition , 2003 .

[19]  Jean-Louis Chaboche,et al.  Towards a micromechanics based inelastic and damage modeling of composites , 2001 .

[20]  A. Kucerová Identification of nonlinear mechanical model parameters based on softcomputing methods , 2007 .

[21]  G. J. Dvorak,et al.  Implementation of the transformation field analysis for inelastic composite materials , 1994 .

[22]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[23]  Dallas N. Little,et al.  Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics , 2005 .

[24]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[25]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[26]  Zdeněk Bittnar,et al.  Numerical methods in structural mechanics , 1996 .

[27]  A. T. Papagiannakis,et al.  Micromechanical Analysis of Viscoelastic Properties of Asphalt Concretes , 2002 .

[28]  Carl L Monismith,et al.  NONLINEAR ELASTIC VISCOUS WITH DAMAGE MODEL TO PREDICT PERMANENT DEFORMATION OF ASPHALT CONCRETE MIXES , 1993 .

[29]  J. Zeman,et al.  Nonlinear viscoelastic analysis of statistically homogeneous random composites , 2004 .

[30]  Jan Zeman,et al.  Applying genetic algorithms to selected topics commonly encountered in engineering practice , 2000 .

[31]  Michal Šejnoha,et al.  From random microstructures to representative volume elements , 2007 .

[32]  Sanjeev Adhikari,et al.  Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images , 2009 .

[33]  Jacob Fish Multiscale Analysis Of Large Scale Nonlinear Structures and Materials , 2000 .

[34]  Roman Lackner,et al.  Is Low-Temperature Creep of Asphalt Mastic Independent of Filler Shape and Mineralogy?—Arguments from Multiscale Analysis , 2005 .

[35]  A. T. Papagiannakis,et al.  LINEAR AND NONLINEAR VISCOELASTIC ANALYSIS OF THE MICROSTRUCTURE OF ASPHALT CONCRETES , 2004 .

[36]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[37]  A. I. Leonov Nonequilibrium thermodynamics and rheology of viscoelastic polymer media , 1976 .

[38]  G. Dvorak Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[39]  M. Procura,et al.  QCD sum rules for rho mesons in vacuum and in-medium, re-examined , 2008, 0803.3262.

[40]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[41]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .