Gasoline Direct Injection (GDI) technology has been recognized as an effective way to achieve better engine performance and reduced pollutant emissions. High-pressure injectors are demonstrating many advantages in the applications for GDI engines providing a better fuel atomization, a better mixing with the air, a consequent more efficient combustion and, finally, reduced tailpipe emissions. In this context the present work features a dual experimental-numerical characterization of the jet issued from a multi-hole injector. The numerical model has been developed by means of a Eulerian-Lagrangian CFD code and validated thanks to experimental data collected with schlieren and Mie scattering imaging techniques.