A unified method for hybrid subdivision surface design using geometric partial differential equations
暂无分享,去创建一个
Guoliang Xu | Yongjie Zhang | Qing Pan | Guoliang Xu | Y. Zhang | Qing Pan
[1] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[2] Guillermo Sapiro,et al. Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[3] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[4] Guoliang Xu,et al. Construction of quadrilateral subdivision surfaces with prescribed G1 boundary conditions , 2011, Comput. Aided Des..
[5] Charles T. Loop,et al. Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.
[6] R. Bryant. A duality theorem for Willmore surfaces , 1984 .
[7] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[8] Guoliang Xu,et al. G2 surface modeling using minimal mean-curvature-variation flow , 2007, Comput. Aided Des..
[9] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[10] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[11] Bobby Bodenheimer,et al. Synthesis and evaluation of linear motion transitions , 2008, TOGS.
[12] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[13] W. Mullins. Two‐Dimensional Motion of Idealized Grain Boundaries , 1956 .
[14] Olga Sorkine-Hornung,et al. Mixed Finite Elements for Variational Surface Modeling , 2010, Comput. Graph. Forum.
[15] J. Escher,et al. The volume preserving mean curvature flow near spheres , 1998 .
[16] Guoliang Xu,et al. Construction of minimal subdivision surface with a given boundary , 2011, Comput. Aided Des..
[17] Wang Yuguo,et al. Piecewise Smooth Surfaces Reconstruction for Finite Element Mixed Meshes , 2010, 2010 International Conference on Digital Manufacturing & Automation.
[18] J. Clark,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[19] Ahmad H. Nasri,et al. Designing Catmull-Clark subdivision surfaces with curve interpolation constraints , 2002, Comput. Graph..
[20] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[21] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[22] Leif Kobbelt,et al. A variational approach to subdivision , 1996, Comput. Aided Geom. Des..
[23] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[24] Michael M. Kazhdan,et al. Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.
[25] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[26] Leif Kobbelt,et al. Geometric fairing of irregular meshes for free-form surface design , 2001, Comput. Aided Geom. Des..
[27] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[28] Joe D. Warren,et al. Discrete bi-Laplacians and biharmonic b-splines , 2012, ACM Trans. Graph..
[29] J. Warren,et al. Subdivision methods for geometric design , 1995 .
[30] Hong Qin,et al. A novel FEM-based dynamic framework for subdivision surfaces , 2000, Comput. Aided Des..
[31] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[32] Jörg Peters,et al. Combining 4- and 3-direction subdivision , 2004, ACM Trans. Graph..
[33] Ahmad H. Nasri,et al. Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..
[34] L. Simon. Existence of surfaces minimizing the Willmore functional , 1993 .
[35] Malcolm I. G. Bloor,et al. Representing PDE surfaces in terms of B-splines , 1990, Comput. Aided Des..
[36] Charles T. Loop,et al. Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.
[37] William J. Firey,et al. Shapes of worn stones , 1974 .