Light concentration in polymer bulk heterojunction solar cells with plasmonic nanoparticles

We investigate the light concentration effect of localized surface plasmon resonance by embedding a layer of silver nanoparticles in the low band gap polymer bulk heterojunction solar cells. Particle electromagnetic interaction is demonstrated by using the 3-dimensional finite-difference time-domain computational method. This nanostructure exhibits broadband optical absorption enhancement and weak dependence on incident light polarization. The optical concentration mechanism is discussed by near-field distribution analysis. This method can be used to optimize the design of plasmonic organic solar cells for high energy conversion efficiency.