A conservative scheme for Vlasov Poisson Landau modeling collisional plasmas
暂无分享,去创建一个
[1] Luis Chacón,et al. A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..
[2] J. Delcroix. Physique des plasmas , 1963 .
[3] BY ADAPTIVE , 2022 .
[4] Luis Chacón,et al. An adaptive, conservative 0D-2V multispecies Rosenbluth-Fokker-Planck solver for arbitrarily disparate mass and temperature regimes , 2016, J. Comput. Phys..
[5] Xiangxiong Zhang,et al. On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..
[6] Chenglong Zhang,et al. On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations , 2014 .
[7] J. Thomson,et al. Philosophical Magazine , 1945, Nature.
[8] Xiangxiong Zhang,et al. Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..
[9] G. Toscani,et al. Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .
[10] M. F. O'REILLY,et al. On Mass , 1897, Nature.
[11] Francis F. Chen,et al. Introduction to Plasma Physics and Controlled Fusion , 2015 .
[12] Xiangxiong Zhang,et al. Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.
[13] P. H. Sakanaka,et al. RELAXATION OF TWO-TEMPERATURE PLASMA , 1997 .
[14] Yingda Cheng,et al. Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..
[15] Irene M. Gamba,et al. Convergence and Error Estimates for the Lagrangian-Based Conservative Spectral Method for Boltzmann Equations , 2016, SIAM J. Numer. Anal..
[16] Yingda Cheng,et al. Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations , 2012, Math. Comput..
[17] Irene M. Gamba,et al. Conservative deterministic spectral Boltzmann solver near the grazing collisions limit , 2012, 1211.0327.
[18] E. Rutherford,et al. The scattering of alpha and beta particles by matter and the structure of the atom , 1911 .
[19] Francis Filbet,et al. Numerical approximation of collisional plasmas by high order methods , 2004 .
[20] Irene M. Gamba,et al. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..
[21] I. Gamba. A CONSERVATIVE DISCONTINUOUS GALERKIN SOLVER FOR HOMOGENEOUS BOLTZMANN EQUATION , 2016 .
[22] Lorenzo Pareschi,et al. A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .
[23] Mohammed Lemou. Numerical Algorithms for Axisymmetric Fokker—Planck—Landau Operators , 2000 .
[24] G. Dimarco,et al. Numerical methods for plasma physics in collisional regimes , 2014, Journal of Plasma Physics.
[25] Yingda Cheng,et al. Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..
[26] George Bosilca,et al. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.
[27] E. Rutherford,et al. The scattering of α and β particles by matter and the structure of the atom , 2012 .
[28] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[29] F. Valentini,et al. Erratum: “Eulerian simulations of collisional effects on electrostatic plasma waves” [Phys. Plasmas 20, 092111 (2013)] , 2014 .
[30] Stéphane Cordier,et al. Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .
[31] F. Valentini,et al. Eulerian simulations of collisional effects on electrostatic plasma waves , 2013, 1307.0683.
[32] Xiangxiong Zhang,et al. On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..
[33] Colin J. McKinstrie,et al. Accurate formulas for the Landau damping rates of electrostatic waves , 1999 .
[34] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[35] P. J. Morrison,et al. A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..
[36] A. Bobylev,et al. DSMC methods for multicomponent plasmas , 2012 .
[37] Chenglong Zhang,et al. A conservative discontinuous Galerkin scheme with O(N2) operations in computing Boltzmann collision weight matrix , 2014 .
[38] Yingda Cheng,et al. Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems , 2012 .
[39] William M. MacDonald,et al. Fokker-Planck Equation for an Inverse-Square Force , 1957 .