A conservative scheme for Vlasov Poisson Landau modeling collisional plasmas

[1]  Luis Chacón,et al.  A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..

[2]  J. Delcroix Physique des plasmas , 1963 .

[3]  BY ADAPTIVE , 2022 .

[4]  Luis Chacón,et al.  An adaptive, conservative 0D-2V multispecies Rosenbluth-Fokker-Planck solver for arbitrarily disparate mass and temperature regimes , 2016, J. Comput. Phys..

[5]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[6]  Chenglong Zhang,et al.  On study of deterministic conservative solvers for the nonlinear boltzmann and landau transport equations , 2014 .

[7]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[8]  Xiangxiong Zhang,et al.  Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms , 2011, J. Comput. Phys..

[9]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[10]  M. F. O'REILLY,et al.  On Mass , 1897, Nature.

[11]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[12]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[13]  P. H. Sakanaka,et al.  RELAXATION OF TWO-TEMPERATURE PLASMA , 1997 .

[14]  Yingda Cheng,et al.  Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..

[15]  Irene M. Gamba,et al.  Convergence and Error Estimates for the Lagrangian-Based Conservative Spectral Method for Boltzmann Equations , 2016, SIAM J. Numer. Anal..

[16]  Yingda Cheng,et al.  Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations , 2012, Math. Comput..

[17]  Irene M. Gamba,et al.  Conservative deterministic spectral Boltzmann solver near the grazing collisions limit , 2012, 1211.0327.

[18]  E. Rutherford,et al.  The scattering of alpha and beta particles by matter and the structure of the atom , 1911 .

[19]  Francis Filbet,et al.  Numerical approximation of collisional plasmas by high order methods , 2004 .

[20]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[21]  I. Gamba A CONSERVATIVE DISCONTINUOUS GALERKIN SOLVER FOR HOMOGENEOUS BOLTZMANN EQUATION , 2016 .

[22]  Lorenzo Pareschi,et al.  A Numerical Method for the Accurate Solution of the Fokker–Planck–Landau Equation in the Nonhomogeneous Case , 2002 .

[23]  Mohammed Lemou Numerical Algorithms for Axisymmetric Fokker—Planck—Landau Operators , 2000 .

[24]  G. Dimarco,et al.  Numerical methods for plasma physics in collisional regimes , 2014, Journal of Plasma Physics.

[25]  Yingda Cheng,et al.  Discontinuous Galerkin Methods for the Vlasov-Maxwell Equations , 2013, SIAM J. Numer. Anal..

[26]  George Bosilca,et al.  Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.

[27]  E. Rutherford,et al.  The scattering of α and β particles by matter and the structure of the atom , 2012 .

[28]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[29]  F. Valentini,et al.  Erratum: “Eulerian simulations of collisional effects on electrostatic plasma waves” [Phys. Plasmas 20, 092111 (2013)] , 2014 .

[30]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[31]  F. Valentini,et al.  Eulerian simulations of collisional effects on electrostatic plasma waves , 2013, 1307.0683.

[32]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[33]  Colin J. McKinstrie,et al.  Accurate formulas for the Landau damping rates of electrostatic waves , 1999 .

[34]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[35]  P. J. Morrison,et al.  A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..

[36]  A. Bobylev,et al.  DSMC methods for multicomponent plasmas , 2012 .

[37]  Chenglong Zhang,et al.  A conservative discontinuous Galerkin scheme with O(N2) operations in computing Boltzmann collision weight matrix , 2014 .

[38]  Yingda Cheng,et al.  Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems , 2012 .

[39]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .