State complexity of operations on input-driven pushdown automata

The family of languages recognized by deterministic input-driven pushdown automata (IDPDA; a.k.a. visibly pushdown automata, a.k.a. nested word automata) is known to be closed under concatenation, Kleene star and reversal (under natural assumptions on the partition of the alphabet). As shown by Alur and Madhusudan (2004) 2, the Kleene star and the reversal of an n-state IDPDA can be represented by an IDPDA with 2 O ( n 2 ) states, while concatenation of an m-state and an n-state IDPDA is represented by an IDPDA with 2 O ( ( m + n ) 2 ) states. This paper presents more efficient constructions for the Kleene star and for the reversal, which yield 2 ( n log n ) states, as well as an m 2 ( n log n ) -state construction for the concatenation. These constructions are optimal up to a factor in the exponent, due to the close lower bounds previously established by Piao and Salomaa (2009) 27.

[1]  Kai Salomaa,et al.  Operational state complexity of nested word automata , 2008, Theor. Comput. Sci..

[2]  Narad Rampersad The state complexity of L2 and Lk , 2006, Inf. Process. Lett..

[3]  Joachim Niehren,et al.  Early Nested Word Automata for XPath Query Answering on XML Streams , 2013, CIAA.

[4]  Alexander Okhotin,et al.  Descriptional Complexity of Unambiguous Nested Word Automata , 2011, LATA.

[5]  Igor Walukiewicz,et al.  Minimizing Variants of Visibly Pushdown Automata , 2007, MFCS.

[6]  Alexander Okhotin,et al.  Complexity of input-driven pushdown automata , 2014, SIGA.

[7]  Ernst L. Leiss,et al.  Succint Representation of Regular Languages by Boolean Automata , 1981, Theor. Comput. Sci..

[8]  Manfred Droste,et al.  Weighted Nested Word Automata and Logics over Strong Bimonoids , 2012, CIAA.

[9]  Stefano Crespi-Reghizzi,et al.  Operator Precedence and the Visibly Pushdown Property , 2010, LATA.

[10]  Martin Kutrib,et al.  Nondeterministic Descriptional Complexity Of Regular Languages , 2003, Int. J. Found. Comput. Sci..

[11]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[12]  Jozef Jirásek,et al.  Operations on Unambiguous Finite Automata , 2016, DLT.

[13]  Michael Domaratzki,et al.  State complexity of power , 2009, Theor. Comput. Sci..

[14]  Alexander Okhotin,et al.  Descriptional Complexity of Input-Driven Pushdown Automata , 2012, Languages Alive.

[15]  Jean-Marc Talbot,et al.  Trimming Visibly Pushdown Automata , 2013, CIAA.

[16]  Patrick W. Dymond Input-Driven Languages are in log n Depth , 1988, Inf. Process. Lett..

[17]  K. Mehlhorn Pebbling Moutain Ranges and its Application of DCFL-Recognition , 1980, ICALP.

[18]  Alexander Okhotin,et al.  Descriptional complexity of unambiguous input-driven pushdown automata , 2015, Theor. Comput. Sci..

[19]  Christof Löding,et al.  Regularity Problems for Visibly Pushdown Languages , 2006, STACS.

[20]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[21]  Yo-Sub Han,et al.  Nondeterministic state complexity of nested word automata , 2009, Theor. Comput. Sci..

[22]  Kai Salomaa,et al.  Limitations of lower bound methods for deterministic nested word automata , 2011, Inf. Comput..

[23]  Rupak Majumdar,et al.  A Uniformization Theorem for Nested Word to Word Transductions , 2013, CIAA.

[24]  Alexander Okhotin Unambiguous finite automata over a unary alphabet , 2012, Inf. Comput..

[25]  Alexander Okhotin,et al.  Input-driven languages are linear conjunctive , 2016, Theor. Comput. Sci..

[26]  Jean-Camille Birget,et al.  Partial Orders on Words, Minimal Elements of Regular Languages and State Complexity , 1993, Theor. Comput. Sci..

[27]  Mahesh Viswanathan,et al.  Congruences for Visibly Pushdown Languages , 2005, ICALP.

[28]  Joachim Niehren,et al.  Streaming tree automata , 2008, Inf. Process. Lett..

[29]  Alexander Okhotin Comparing Linear Conjunctive Languages to Subfamilies of the Context-Free Languages , 2011, SOFSEM.

[30]  Burchard von Braunmühl,et al.  Input-Driven Languages are Recognized in log n Space , 1983, FCT.