Transition Metal-Catalyzed Oxidation of Atmospheric Sulfur: Global Implications for the Sulfur Budget

[1] We use observations of the oxygen-17 excess (Δ 17 O) of sulfate in the Arctic to quantify the sulfate source from aqueous SO 2 (S(IV)) oxidation by O 2 catalyzed by transition metals. Due to the lack of photochemically produced OH and H 2 O 2 in high latitudes during winter, combined with high anthropogenic SO 2 emissions in the Northern Hemisphere, oxidation by O 3 is predicted to dominate sulfate formation during winter in this region. However, Δ 17 O measurements of sulfate aerosol collected in Alert, Canada, are not consistent with O 3 as the dominant oxidant and indicate that a S(IV) oxidant with near-zero Δ 17 O values (O 2 ) is important during winter. We use a global chemical transport model to interpret quantitatively the Alert observations and assess the global importance of sulfate production by Fe(III)- and Mn(II)-catalyzed oxidation of S(IV) by O 2 . We scale anthropogenic and natural atmospheric metal concentrations to primary anthropogenic sulfate and dust concentrations, respectively. The solubility and oxidation state of these metals is determined by cloud liquid water content, source, and sunlight. By including metal-catalyzed S(IV) oxidation, the model is consistent with the Δ 17 O magnitudes in the Alert data during winter. Globally, we find that this mechanism contributes 9-17% to sulfate production. The inclusion of metal-catalyzed oxidation does not resolve model discrepancies with surface SO 2 and sulfate observations in Europe. Oxygen isotope measurements of sulfate aerosols collected near anthropogenic and dust sources of metals would help to verify the importance of this sulfur oxidation pathway.

[1]  W. Pickering General Strategies for Speciation , 2007 .

[2]  P. Sedwick,et al.  Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea , 2007 .

[3]  Zhi-gang Guo,et al.  Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China , 2007 .

[4]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[5]  N. Mahowald,et al.  Combustion iron distribution and deposition , 2007 .

[6]  Daniel J. Jacob,et al.  The impact of transpacific transport of mineral dust in the United States , 2007 .

[7]  Erik Swietlicki,et al.  Overview of the inorganic and organic composition of size‐segregated aerosol in Rondônia, Brazil, from the biomass‐burning period to the onset of the wet season , 2007 .

[8]  P. Quinn,et al.  Arctic haze: current trends and knowledge gaps , 2007 .

[9]  Harro A. J. Meijer,et al.  Radiocarbon analyses along the EDML ice core in Antarctica , 2007 .

[10]  P. Thunis,et al.  The sensitivity of aerosol in Europe to two different emission inventories and temporal distribution of emissions , 2006 .

[11]  G. Berčič,et al.  Influence of Atmospheric Carboxylic Acids on Catalytic Oxidation of Sulfur(IV) , 2006 .

[12]  A. Nenes,et al.  Effects of aqueous organosulfur chemistry on particulate methanesulfonate to non–sea salt sulfate ratios in the marine atmosphere , 2006 .

[13]  S. Gong,et al.  Isotopic constraints on non‐photochemical sulfate production in the Arctic winter , 2006 .

[14]  K. Linge,et al.  Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean , 2006 .

[15]  N. Mahowald,et al.  Atmospheric global dust cycle and iron inputs to the ocean , 2005 .

[16]  S. Bauer,et al.  Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model , 2005 .

[17]  D. Jacob,et al.  Sulfate Formation in Sea-Salt Aerosols: Constraints from Oxygen Isotopes , 2005 .

[18]  P. Boyd,et al.  Simulating the cloud processing of iron in Australian dust: pH and dust concentration , 2005 .

[19]  N. Mahowald,et al.  Estimates of atmospheric-processed soluble iron from observations and a global mineral aerosol model: Biogeochemical implications , 2004 .

[20]  M. Chin,et al.  Natural and transboundary pollution influences on sulfate‐nitrate‐ammonium aerosols in the United States: Implications for policy , 2004 .

[21]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[22]  Ying Chen,et al.  Seasonal and spatial distributions and dry deposition fluxes of atmospheric total and labile iron over the tropical and subtropical North Atlantic Ocean , 2004 .

[23]  M. Thiemens,et al.  Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen , 2004 .

[24]  Zhi-gang Guo,et al.  The elemental and organic characteristics of PM2.5 in Asian dust episodes in Qingdao, China, 2002 , 2004 .

[25]  S. Bonnet,et al.  Dissolution of atmospheric iron in seawater , 2004 .

[26]  Ying Chen,et al.  Determination of various types of labile atmospheric iron over remote oceans , 2003 .

[27]  S. Bekki,et al.  Evidence from sulfate mass independent oxygen isotopic compositions of dramatic changes in atmospheric oxidation following massive volcanic eruptions , 2003 .

[28]  C. Usher,et al.  Reactions on mineral dust. , 2003, Chemical reviews.

[29]  C. Brenninkmeijer,et al.  Isotope effects in the chemistry of atmospheric trace compounds. , 2003, Chemical reviews.

[30]  J. Turšič,et al.  Influence of ionic strength on aqueous oxidation of SO2 catalyzed by manganese , 2003 .

[31]  Corinne Le Quéré,et al.  Dust impact on marine biota and atmospheric CO2 in glacial periods , 2003 .

[32]  E. Boyle,et al.  Iron in the Sargasso Sea: Implications for the processes controlling dissolved Fe distribution in the ocean , 2002 .

[33]  A. Ravishankara,et al.  Role of NO3 in sulfate production in the wintertime northern latitudes , 2002 .

[34]  U. Lohmann,et al.  Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme , 2002 .

[35]  P. Crutzen,et al.  Modeling halogen chemistry in the marine boundary layer 2. Interactions with sulfur and the cloud‐covered MBL , 2002 .

[36]  Jiongmin Zhang,et al.  Spatial and temporal variability of trace metals in aerosol from the desert region of China and the Yellow Sea , 2002 .

[37]  M. Thiemens,et al.  Sulfur (32S, 33S, 34S, 36S) and oxygen (16O,17O,18O) isotopic ratios of primary sulfate produced from combustion processes , 2002 .

[38]  M. Thiemens,et al.  Climate driven changes in the oxidation pathways of atmospheric sulfur , 2002 .

[39]  F. Dentener,et al.  Aqueous Phase Reaction of HNO4: The Impact on Tropospheric Chemistry , 2002 .

[40]  M. Chin,et al.  Analysis of regional budgets of sulfur species modeled for the COSAM exercise: Sulfur species modeled for the COSAM exercise , 2001 .

[41]  A. Bandy,et al.  Measurements of enhanced H2SO4 and 3–4 nm particles near a frontal cloud during the First Aerosol Characterization Experiment (ACE 1) , 2001 .

[42]  J. Lyons,et al.  Transfer of mass‐independent fractionation in ozone to other oxygen‐containing radicals in the atmosphere , 2001 .

[43]  M. Thiemens,et al.  The δ17O and δ18O measurements of atmospheric sulfate from a coastal and high alpine region: A mass-independent isotopic anomaly , 2001 .

[44]  J. Lelieveld,et al.  Saharan dust in Brazil and Suriname during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) - Cooperative LBA Regional Experiment (CLAIRE) in March 1998 , 2001 .

[45]  D. Jacob,et al.  Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields , 2001 .

[46]  M. Chin,et al.  Analysis of regional budgets of sulfur species modeled for the COSAM exercise , 2001 .

[47]  C. Land,et al.  A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights , 2001 .

[48]  M. Thiemens,et al.  Laboratory oxygen isotopic study of sulfur (IV) oxidation: Origin of the mass‐independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth , 2000 .

[49]  A. Johansen,et al.  Chemical composition of aerosols collected over the tropical North Atlantic Ocean , 2000 .

[50]  L. Pirjola,et al.  Stable sulphate clusters as a source of new atmospheric particles , 2000, Nature.

[51]  Mark H. Thiemens,et al.  Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites , 2000, Nature.

[52]  S. Doney,et al.  Iron supply and demand in the upper ocean , 2000 .

[53]  P. J. Rasch,et al.  A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995 , 2000 .

[54]  D. Krankowsky,et al.  RELATIVE FORMATION RATES OF 50O3 AND 52O3 IN 16O-18O MIXTURES , 1999 .

[55]  Y. Balkanski,et al.  Modeling the mineralogy of atmospheric dust sources , 1999 .

[56]  M. Thiemens,et al.  Analytical procedure to determine both δ18O and δ17O of H2O2 in natural water and first measurements , 1999 .

[57]  L. Barrie,et al.  Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995 , 1999 .

[58]  M. Thiemens,et al.  Mass-independent isotope effects in planetary atmospheres and the early solar system. , 1999, Science.

[59]  Erbacher,et al.  Ozone isotope enrichment: isotopomer-specific rate coefficients , 1999, Science.

[60]  J. Collett,et al.  The Drop Size-Dependence of Iron and Manganese Concentrations in Clouds and Fogs: Implications for Sulfate Production , 1998 .

[61]  D. Jacob,et al.  Global simulation of tropospheric O3-NOx-hydrocarbon chemistry , 1998 .

[62]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[63]  A. Johansen,et al.  Measurements of Trace Metal (Fe, Cu, Mn, Cr) Oxidation States in Fog and Stratus Clouds. , 1998, Journal of the Air & Waste Management Association.

[64]  B. Anderson,et al.  Gas‐to‐particle conversion of tropospheric sulfur as estimated from observations in the western North Pacific during PEM‐West B , 1997 .

[65]  M. Thiemens,et al.  The isotopic composition of tropospheric ozone in three environments , 1997 .

[66]  A. P. Purmal,et al.  On the Kinetics of Bisulfite Autoxidation Catalyzed by Manganese(II) Ions , 1997 .

[67]  J. Prospero,et al.  Diel variability of soluble Fe(II) and soluble total Fe in North African dust in the trade winds at Barbados , 1997 .

[68]  M. Dubey,et al.  Isotope Specific Kinetics of Hydroxyl Radical (OH) with Water (H2O): Testing Models of Reactivity and Atmospheric Fractionation , 1997 .

[69]  P. Kasibhatla,et al.  A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic , 1997 .

[70]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[71]  P. Crutzen,et al.  A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer , 1996, Nature.

[72]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[73]  N. Kubilay,et al.  Trace elements in atmospheric particulates over the Eastern Mediterranean; Concentrations, sources, and temporal variability , 1995 .

[74]  G. Zhuang,et al.  Iron(II) in rainwater, snow, and surface seawater from a coastal environment , 1995 .

[75]  J. Stehr,et al.  Measurement of heavy isotope enrichment in tropospheric ozone , 1995 .

[76]  R. Duce,et al.  Dissolved input of manganese to the ocean: Aerosol source , 1994 .

[77]  T. Jickells,et al.  Solubilisation of aerosol trace metals by cloud processing: A laboratory study , 1994 .

[78]  Sture Fronæus,et al.  Kinetics and Mechanism for Manganese‐Catalyzed Oxidation of Sulfur(IV) by Oxygen in Aqueous Solution. , 1994 .

[79]  L. Sigg,et al.  Sulfur dioxide oxidation in atmospheric water: role of iron(II) and effect of ligands , 1993 .

[80]  M. Hoffmann,et al.  Redox chemistry of iron in fog and stratus clouds , 1993 .

[81]  Sture Fronæus,et al.  Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution , 1993 .

[82]  A. Chughtai,et al.  Effect of Metal Oxides and Black Carbon (Soot) on SO2/O2/H2O Reaction Systems , 1993 .

[83]  R. Eldik,et al.  The synergistic effect of manganese (II) in the sulfite-induced autoxidation of metal ions and complexes in aqueous solution , 1992 .

[84]  M. Hoffmann,et al.  Simultaneous spectrophotometric measurement of iron(II) and iron(III) in atmospheric water , 1992 .

[85]  R. Duce,et al.  Chemistry of iron in marine aerosols , 1992 .

[86]  J. Levec,et al.  Aqueous S(IV) oxidation. II: Synergistic effects of some metal ions , 1992 .

[87]  Robert A. Duce,et al.  Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols , 1992, Nature.

[88]  K. Lieser,et al.  Transition metals in atmospheric aqueous samples, analytical determination and speciation , 1991 .

[89]  P. Crutzen,et al.  Are there interactions of iodine and sulfur species in marine air photochemistry , 1990 .

[90]  M. Kelemen,et al.  A dynamic model of production , 1990 .

[91]  L. Sigg,et al.  Evidence for redox cycling of iron in atmospheric water droplets , 1990, Nature.

[92]  D. Jacob,et al.  Chemistry of a polluted cloudy boundary layer , 1989 .

[93]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[94]  Kimber D. Fogelman,et al.  Non-metal redox kinetics : hypochlorite and hypochlorous acid reactions with cyanide , 1989 .

[95]  G. Gordon,et al.  The Chemistry of acid rain : sources and atmospheric processes , 1987 .

[96]  M. L. Mandich,et al.  Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets , 1986 .

[97]  M. L. Mandich,et al.  Kinetic model studies of atmospheric droplet chemistry: 2. Homogeneous transition metal chemistry in raindrops , 1986 .

[98]  S. Schwartz Aqueous-phase reactions in clouds , 1986 .

[99]  Hermann E. Gerber,et al.  Relative - Humidity Parameterization of the Navy Aerosol Model (NAM) , 1985 .

[100]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[101]  R. Somerville Cloud optical thickness feedbacks in the CO2 climate problem , 1984 .

[102]  D. Jacob,et al.  A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets , 1984 .

[103]  Wim Salomons,et al.  Metals in the Hydrocycle. , 1983 .

[104]  D. Jacob,et al.  A dynamic model for the production of H+ NO3 −, and SO4 2− in urban fog , 1983 .

[105]  T. Graedel,et al.  Chemistry within aqueous atmospheric aerosols and raindrops , 1981 .

[106]  R. Clayton,et al.  Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar , 1978 .

[107]  S. Bengtsson,et al.  Catalytic oxidation of sulphite in diluted aqueous solutions , 1975 .

[108]  R. Hoffmann,et al.  A Dynamic Model for the Production of H * NO • 3 in Urban Fog-, and SO , 2007 .

[109]  R. Losno,et al.  Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. , 2005, Chemosphere.

[110]  Jian Zhan,et al.  Effects of oxalate on Fe-catalyzed photooxidation of dissolved sulfur dioxide in atmospheric water , 2005 .

[111]  Leiming Zhang,et al.  A size-segregated particle dry deposition scheme for an atmospheric aerosol module , 2001 .

[112]  S. Doney,et al.  Erratum: ``Iron supply and demand in the upper ocean'' , 2000 .

[113]  P. Warneck The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds , 1999 .

[114]  F. Deutsch,et al.  Analytical characterization of manganese in rainwater and snow samples , 1997 .

[115]  L. Martin,et al.  Catalyzed oxidation of sulfur dioxide in solution: The iron-manganese synergism☆ , 1991 .

[116]  J. Levec,et al.  Aqueous S(IV) oxidation—I. Catalytic effects of some metal ions , 1991 .

[117]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[118]  M. W. Hill,et al.  The effect of ionic strength on the manganese catalyzed oxidation of sulfur(IV) , 1987 .

[119]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[120]  T. Iversen,et al.  Arctic air pollution and large scale atmospheric flows , 1985 .

[121]  S. Taylor The continental crust , 1985 .

[122]  J. Calvert SO[2], NO, and NO[2] oxidation mechanisms : atmospheric considerations , 1984 .

[123]  D. Jacob,et al.  Kinetics and Mechanisms of the Catalytic Oxidation of Dissolved Sulfur Dioxide in Aqueous Solution: An Application to Nighttime Fog Water Chemistry , 1984 .

[124]  W. Stockwell,et al.  The mechanism of the HO-SO2 reaction , 1983 .

[125]  R. G. Semonin,et al.  Precipitation scavenging, dry deposition, and resuspension : proceedings of the Fourth International Conference, Santa Monica, California, 29 November-3 December 1982 , 1983 .

[126]  S. Schwartz,et al.  Kinetics of oxidation of aqueous sulfur(IV) by nitrogen dioxide , 1982 .

[127]  Romesh Kumar,et al.  Oxygen-18 study of the aqueous-phase oxidation of sulfur dioxide , 1981 .

[128]  M. W. Hill,et al.  The iron catalyzed oxidation of sulfur: Reconciliation of the literature rates , 1967 .

[129]  Ralph G. Pearson,et al.  Kinetics and mechanism , 1961 .