VIATO-visual interactive aircraft trajectory optimization

An approach towards automated solution of aircraft trajectory optimization problems is introduced and applied to an interactive MS-Windows software called 'Visual Interactive Aircraft Trajectory Optimization' (VIATO). The software solves, e.g., minimum time trajectories to a fixed or to a moving target. It consists of an automated optimization routine and a graphical user interface. The software is easy-to-use and thus its user does not need to know optimal control theory and mathematical modeling. Most mathematical models of flight vehicles are structurally similar and differ only in parameters. In VIATO software the equation of motion and the state and the control constraints are fixed in advance and different aircraft types are represented as a set of parameters. Specifying also objective functions of the optimal control problems the explicit formulation of optimal control problems is totally avoided. Reliable convergence of solution methods is achieved by replacing the original infinite dimensional problem with a finite dimensional approximation. The approximation is solved using nonlinear programming.

[1]  Jaroslav Doležal,et al.  Numerical solution of dynamic optimization problems using parametrization and Op ti A software , 1996 .

[2]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[3]  Valery Y. Glizer,et al.  Optimal planar interception with fixed end conditions: Closed-form solution , 1996 .

[4]  T. Raivio,et al.  Aircraft trajectory optimization using nonlinear programming , 1996 .

[5]  Yigang Fan,et al.  Time-optimal lateral maneuvers of an aircraft , 1995 .

[6]  R. M. Rennie,et al.  Dynamic Leading-Edge Flap Scheduling , 1995 .

[7]  Y. Tsujikawa Analysis of an Optimal Flight Path of Subsonic Transport Aircraft for Fuel Saving , 1995 .

[8]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[9]  David R. Downing,et al.  Functional agility metrics and optimal trajectory analysis , 1994 .

[10]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[11]  P. Gill,et al.  Large-scale SQP methods and their application in trajectory optimization , 1994 .

[12]  J. Betts Issues in the direct transcription of optimal control problems to sparse nonlinear programs , 1994 .

[13]  Eugene M. Cliff,et al.  Range optimal trajectories for an aircraft flying in the vertical plane , 1994 .

[14]  T. Raivio,et al.  A method to generate trajectories for minimum time climb , 1994 .

[15]  H. J. Pesch A Practical Guide to the Solution of Real-Life Optimal Control Problems , 1994 .

[16]  Hans Seywald,et al.  Trajectory optimization based on differential inclusion , 1994 .

[17]  Eric M. Queen,et al.  Variational Trajectory Optimization Tool Set: Technical description and user's manual , 1993 .

[18]  J. Betts,et al.  Path-constrained trajectory optimization using sparse sequential quadratic programming , 1991 .

[19]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[20]  P. Toint,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[21]  A. L. Tits,et al.  User's Guide for FSQP Version 3.0c: A FORTRAN Code for Solving Constrained Nonlinear (Minimax) Optimization Problems, Generating Iterates Satisfying All Inequality and Linear Constraints , 1992 .

[22]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions , 1991 .

[23]  C. R. Hargraves,et al.  Optimal multiple vehicle trajectories , 1990 .

[24]  R. Fletcher Practical Methods of Optimization , 1988 .

[25]  Angelo Miele,et al.  Optimal abort landing trajectories in the presence of windshear , 1987 .

[26]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[27]  J. Vian,et al.  Trajectory Optimization with Risk Minimization for Military Aircraft , 1987 .

[28]  C. R. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1986 .

[29]  P. Gill,et al.  Model Building and Practical Aspects of Nonlinear Programming , 1985 .

[30]  Dieter Kraft,et al.  On Converting Optimal Control Problems into Nonlinear Programming Problems , 1985 .

[31]  Michael A. Saunders,et al.  MINOS 5. 0 user's guide , 1983 .

[32]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[33]  R. Stevenson,et al.  Program to Optimize Simulated Trajectories (POST). Volume 3: Programmer's manual , 1975 .

[34]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[35]  S. M. Roberts,et al.  Two-point boundary value problems: shooting methods , 1972 .

[36]  A. E. Bryson,et al.  A Steepest-Ascent Method for Solving Optimum Programming Problems , 1962 .