On best practices in the development of bioinformatics software

Felipe da Veiga Leprevost, Valmir C. Barbosa, and Paulo C. Carvalho are sup-ported by Capes and CNPq; Valmir C. Barbosa is supported by the FAPERJ BBP grant; Yasset Perez-Riverol is supported by the BBSRC PROCESS grant [reference BB/K01997X/1].

[1]  Anton Nekrutenko,et al.  Erratum: The anatomy of successful computational biology software , 2014, Nature Biotechnology.

[2]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[3]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[4]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[5]  Daniel J. Blankenberg,et al.  Galaxy: a platform for interactive large-scale genome analysis. , 2005, Genome research.

[6]  Federico Morán,et al.  Best practices in bioinformatics training for life scientists , 2013, Briefings Bioinform..

[7]  Andreas Prlic,et al.  Ten Simple Rules for the Open Development of Scientific Software , 2012, PLoS Comput. Biol..

[8]  Torsten Seemann,et al.  Ten recommendations for creating usable bioinformatics command line software , 2013, GigaScience.

[9]  Ian M. Mitchell,et al.  Best Practices for Scientific Computing , 2012, PLoS biology.

[10]  Anton Nekrutenko,et al.  The anatomy of successful computational biology software , 2013, Nature Biotechnology.

[11]  Anton Nekrutenko,et al.  Ten Simple Rules for Reproducible Computational Research , 2013, PLoS Comput. Biol..

[12]  Darrel C. Ince,et al.  The case for open computer programs , 2012, Nature.

[13]  Lennart Martens,et al.  Computational proteomics pitfalls and challenges: HavanaBioinfo 2012 workshop report. , 2013, Journal of proteomics.

[14]  Yasset Perez-Riverol,et al.  Open source libraries and frameworks for mass spectrometry based proteomics: A developer's perspective , 2014, Biochimica et biophysica acta.