Illuminating the past 8 billion years of cold gas towards two gravitationally lensed quasars

Using the Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder (ASKAP BETA), we have carried out the first z = 0–1 survey for H I and OH absorption towards the gravitationally lensed quasars PKS B1830−211 and MG J0414+0534. Although we detected all previously reported intervening systems towards PKS B1830−211, in the case of MG J0414+0534, three systems were not found, indicating that the original identifications may have been confused with radio frequency interference. Given the sensitivity of our data, we find that our detection yield is consistent with the expected frequency of intervening H I systems estimated from previous surveys for 21-cm emission in nearby galaxies and z ∼ 3 damped Lyman α absorbers. We find spectral variability in the z = 0.886 face-on spiral galaxy towards PKS B1830−211 from observations undertaken with the Westerbork Synthesis Radio Telescope in 1997/1998 and ASKAP BETA in 2014/2015. The H I equivalent width varies by a few per cent over approximately yearly time-scales. This long-term spectral variability is correlated between the north-east and south-west images of the core, and with the total flux density of the source, implying that it is observationally coupled to intrinsic changes in the quasar. The absence of any detectable variability in the ratio of H I associated with the two core images is in stark contrast to the behaviour previously seen in the molecular lines. We therefore infer that coherent opaque H I structures in this galaxy are larger than the parsec-scale molecular clouds found at mm-wavelengths.

[1]  C. Brogan,et al.  SPATIAL VARIATIONS IN GALACTIC H i STRUCTURE ON AU-SCALES TOWARD 3C 147 OBSERVED WITH THE VERY LONG BASELINE ARRAY , 2009, 0903.0672.

[2]  J. Chengalur,et al.  Variable 21‐cm absorption at z=0.3127 , 2001, astro-ph/0102424.

[3]  J. M. van der Hulst,et al.  Reconciling the local galaxy population with damped Lyman α cross-sections and metal abundances , 2005 .

[4]  H. R. Miller,et al.  THE REMARKABLE γ-RAY ACTIVITY IN THE GRAVITATIONALLY LENSED BLAZAR PKS 1830–211 , 2011, 1106.4224.

[5]  E. Sadler,et al.  Application of a Bayesian Method to Absorption Spectral-Line Finding in Simulated ASKAP Data , 2011, Publications of the Astronomical Society of Australia.

[6]  S. Nair,et al.  PKS 1830-211 as a Gravitationally Lensed System , 1993 .

[7]  Joshua N. Winn,et al.  PKS 1830–211: A Face-on Spiral Galaxy Lens , 2002, astro-ph/0201551.

[8]  A. Bolatto,et al.  H i and OH absorption in the lensing galaxy of MG J0414+0534 , 2007, 0708.1636.

[9]  C. Brogan,et al.  TINY SCALE OPACITY FLUCTUATIONS FROM VLBA, MERLIN, AND VLA OBSERVATIONS OF H i ABSORPTION TOWARD 3C 138 , 2012, 1203.2925.

[10]  K. T. Inoue Weak lensing by minifilament or minivoid as the origin of flux-ratio anomalies in lensed quasar MG0414+0534 , 2014, 1410.1033.

[11]  A. Hopkins,et al.  Science with the Australian Square Kilometre Array Pathfinder , 2007, Publications of the Astronomical Society of Australia.

[12]  D. Turnshek,et al.  Damped Lyα Systems at z < 1.65: The Expanded Sloan Digital Sky Survey Hubble Space Telescope Sample , 2006 .

[13]  Martha P. Haynes,et al.  THE ARECIBO LEGACY FAST ALFA SURVEY. X. THE H i MASS FUNCTION AND FROM THE 40% ALFALFA SURVEY , 2010, 1008.5107.

[14]  D. Jones,et al.  Interstellar Broadening of Images in the Gravitational Lens PKS 1830–211 , 1996, astro-ph/9608023.

[15]  C. Lawrence,et al.  MG0414+0534: A Dusty Gravitational Lens , 1995 .

[16]  John D. Bunton,et al.  The Australian SKA Pathfinder , 2012, Other Conferences.

[17]  J. Zwart,et al.  The star formation history of mass-selected galaxies from the VIDEO survey , 2014, 1401.1648.

[18]  O. Wucknitz,et al.  A gravitationally lensed water maser in the early Universe , 2008, Nature.

[19]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[20]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[21]  K. L. J. Rygl,et al.  TRIGONOMETRIC PARALLAXES OF HIGH MASS STAR FORMING REGIONS: THE STRUCTURE AND KINEMATICS OF THE MILKY WAY , 2014, 1401.5377.

[22]  M. Bershady,et al.  HIGHEST REDSHIFT IMAGE OF NEUTRAL HYDROGEN IN EMISSION: A CHILES DETECTION OF A STARBURSTING GALAXY AT z = 0.376 , 2016, 1606.00013.

[23]  J. D. Murray,et al.  An unusually strong Einstein ring in the radio source PKS1830–211 , 1991, Nature.

[24]  H. Kataza,et al.  SUBARU MID-INFRARED IMAGING OF THE QUADRUPLE LENSES. II. UNVEILING LENS STRUCTURE OF MG0414+0534 AND Q2237+030 , 2009, 0903.2535.

[25]  R. Giovanelli,et al.  Detection of 21 Centimeter H I Absorption at z = 0.78 in a Survey of Radio Continuum Sources , 2004, astro-ph/0408531.

[26]  C. B. Moore,et al.  Neutral Hydrogen 21 cm Absorption at Redshift 2.6365toward the Gravitational Lens MG J0414+0534 , 1998 .

[27]  J. Webb,et al.  A FOURTH H i 21 cm ABSORPTION SYSTEM IN THE SIGHT LINE OF MG J0414+0534: A RECORD FOR INTERVENING ABSORBERS , 2013, 1306.0983.

[28]  B. D. Jeffs,et al.  The Australian Square Kilometre Array Pathfinder: System Architecture and Specifications of the Boolardy Engineering Test Array , 2014, Publications of the Astronomical Society of Australia.

[29]  D. Thompson,et al.  GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830−211 OBSERVED BY Fermi LAT , 2014, The Astrophysical Journal.

[30]  J. X. Prochaska,et al.  The evolution of neutral gas in damped Lyman α systems from the XQ-100 survey , 2015, 1511.05003.

[31]  R. Subrahmanyan,et al.  1830–211 – a flat-spectrum radio source with double structure , 1988 .

[32]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[33]  P. Edwards,et al.  The Time Delay in the Gravitational Lens PKS 1830–211 , 1998, astro-ph/9809301.

[34]  C. Kochanek,et al.  Redshifts of the Gravitational Lenses MG 0414+0534 and MG 0751+2716 , 1998, astro-ph/9809063.

[35]  M. Davis,et al.  Time variations in the high-redshift 21 centimeter absorption spectrum of the BL Lacertae object AO 0235+164 , 1982 .

[36]  D. Nidever,et al.  GASKAP—The Galactic ASKAP Survey , 2012, Publications of the Astronomical Society of Australia.

[37]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[38]  E. Agol,et al.  DETECTION OF SUBSTRUCTURE IN THE GRAVITATIONALLY LENSED QUASAR MG0414+0534 USING MID-INFRARED AND RADIO VLBI OBSERVATIONS , 2012, 1212.2166.

[39]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[40]  K. Menten,et al.  The inhomogeneous ISM toward PKS 1830–211 SW: A detailed view of molecular gas at a look-back time of 7.5 Gyr , 2014, 1412.5408.

[41]  S. Bamford,et al.  Galaxy And Mass Assembly: evolution of the Hα luminosity function and star formation rate density up to z < 0.35 , 2013, 1305.5308.

[42]  N. Roy,et al.  H i 21 cm opacity fluctuations power spectra towards Cassiopeia A , 2010, 1002.4192.

[43]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[44]  T. Bateman,et al.  Development of multi-stage filter banks for ASKAP , 2012, 2012 International Conference on Electromagnetics in Advanced Applications.

[45]  Laboratoire d'Astrophysique de Marseille,et al.  Parsec-scale H i absorption structure in a low-redshift galaxy seen against a compact symmetric object , 2016, 1607.05995.

[46]  ARC Centre of Excellence for All-sky Astrophysics,et al.  A search for H i absorption in nearby radio galaxies using HIPASS , 2014, 1402.3530.

[47]  E. Burbidge,et al.  The nature of the BL Lacertae object AO 0235 + 164 , 1987 .

[48]  R. Morganti,et al.  Cool Outflows and HI absorbers with SKA , 2015, 1501.01091.

[49]  E. R. Switzer,et al.  MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION , 2012, 1208.0331.

[50]  Germany,et al.  Molecules at z = 0.89 - A 4-mm-rest-frame absorption-line survey toward PKS 1830−211 , 2011, 1104.3361.

[51]  R. Braun COSMOLOGICAL EVOLUTION OF ATOMIC GAS AND IMPLICATIONS FOR 21 cm H i ABSORPTION , 2012, 1202.1840.

[52]  J. Young,et al.  CO Luminosity Functions for Far-Infrared- and B-Band-selected Galaxies and the First Estimate for ΩHi + H2 , 2002, astro-ph/0209413.

[53]  Y. Moudden,et al.  First evidence of a gravitational lensing-induced echo in gamma rays with Fermi LAT , 2010, 1011.4498.

[54]  K. Jeganathan,et al.  ASKAP HI imaging of the galaxy group IC 1459 , 2015, 1506.04399.

[55]  B. Magnelli,et al.  Herschel PEP/HerMES: the redshift evolution (0 ≤ z ≤ 4) of dust attenuation and of the total (UV+IR) star formation rate density , 2013, 1304.7000.

[56]  C. B. Moore,et al.  The lensing galaxy in MG 0414+0534 , 1993 .

[57]  O. University,et al.  The ESO UVES advanced data products quasar sample: II. Cosmological evolution of the neutral gas mass density , 2013, 1307.0602.

[58]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[59]  L. Koopmans,et al.  H I kinematics in a massive spiral galaxy at z=0.89 , 2003, astro-ph/0311567.

[60]  C. Lawrence,et al.  A Gravitational Lens Candidate With an Unusually Red Optical Counterpart , 1992 .

[61]  K. Jeganathan,et al.  Discovery of HI gas in a young radio galaxy at z = 0:44 using the Australian SKA Pathfinder , 2015, 1503.01265.

[62]  C. Brogan,et al.  The structure function of Galactic H i opacity fluctuations on au scales based on MERLIN, VLA and VLBA data , 2014, 1405.1696.

[63]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[64]  P. Noterdaeme,et al.  Parsec-scale structures and diffuse bands in a translucent interstellar medium at z 0.079 , 2012, 1210.3036.

[65]  R. Giovanelli,et al.  THE ALFALFA H i ABSORPTION PILOT SURVEY: A WIDE-AREA BLIND DAMPED Lyα SYSTEM SURVEY OF THE LOCAL UNIVERSE , 2011, 1108.4011.

[66]  D. York,et al.  SMALL-SCALE PROPERTIES OF ATOMIC GAS IN EXTENDED DISKS OF GALAXIES , 2014, 1409.3987.

[67]  E. Malanushenko,et al.  Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9 , 2012, 1210.1213.

[68]  R. Takahashi,et al.  Weak lensing by line-of-sight haloes as the origin of flux-ratio anomalies in quadruply lensed QSOs , 2012, 1207.2139.

[69]  Santiago,et al.  An ALMA Early Science survey of molecular absorption lines toward PKS 1830−211 - Analysis of the absorption profiles , 2014, 1404.7667.

[70]  J. Xavier Prochaska,et al.  THE H i CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR , 2016, 1601.01691.

[71]  Timothy Heckman,et al.  The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.

[72]  Australia.,et al.  21-cm absorption studies with the Square Kilometer Array , 2004, astro-ph/0409169.

[73]  S. Johnston,et al.  Multi‐epoch H i line measurements of four southern pulsars , 2003, astro-ph/0302017.

[74]  R. Subrahmanyan,et al.  1830-211 : gravitationaly lensed images of a flat-spectrum radio core? , 1990 .

[75]  R. Ibata,et al.  Microlensing-induced absorption-line variability , 2002, astro-ph/0212041.

[76]  A. M. Swinbank,et al.  Which galaxies dominate the neutral gas content of the Universe , 2013, 1310.4178.

[77]  Bonn,et al.  A precise and accurate determination of the cosmic microwave background temperature at z = 0.89 , 2012, 1212.5456.

[78]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[79]  D. Jones,et al.  PKS 1830–211: A Possible Compound Gravitational Lens , 1996, astro-ph/9609117.

[80]  P. Serra,et al.  The Australian Square Kilometre Array Pathfinder: Performance of the Boolardy Engineering Test Array , 2016, Publications of the Astronomical Society of Australia.

[81]  Michele Cirasuolo,et al.  A large Hα survey at z = 2.23, 1.47, 0.84 and 0.40: the 11 Gyr evolution of star-forming galaxies from HiZELS , 2012, 1202.3436.

[82]  The HI content of star-forming galaxies at z = 0.24 , 2007, astro-ph/0701668.

[83]  J. Macquart Scintillation-induced variability in radio absorption spectra against extragalactic sources , 2004, astro-ph/0412493.

[84]  Helical jet in the gravitationally lensed blazar PKS1830-211 , 2005, astro-ph/0507015.

[85]  J. O’Meara,et al.  Mapping kiloparsec-scale structures in the extended H i disc of the galaxy UGC 000439 by H i 21-cm absorption , 2016, 1601.00971.

[86]  L. Cortese,et al.  HIGHz: a survey of the most H i-massive galaxies at z ∼ 0.2 , 2014, 1410.7464.

[87]  Sebastien Muller,et al.  Drastic changes in the molecular absorption at redshift z = 0.89 toward the quasar PKS 1830–211 , 2008, 0810.0378.

[88]  M. Colless,et al.  Giant Metrewave Radio Telescope observations of neutral atomic hydrogen gas in the COSMOS field at z ∼ 0.37 , 2016, 1605.02006.

[89]  M. Schmidt The Rate of Star Formation , 1959 .

[90]  A. Deshpande The small-scale structure in interstellar H i: a resolvable puzzle , 2000, astro-ph/0005336.

[91]  C. Lidman,et al.  Cosmic Alignment toward the Radio Einstein Ring PKS 1830-211? , 2002 .

[92]  P. Noterdaeme,et al.  Search for cold gas in strong Mg ii absorbers at 0 . 5 < z < 1 . 5 : nature and evolution of 21-cm absorbers , 2014 .

[93]  M. Geller,et al.  RESOLVING THE HIGH-ENERGY UNIVERSE WITH STRONG GRAVITATIONAL LENSING: THE CASE OF PKS 1830–211 , 2015, 1504.05210.

[94]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[95]  P. Noterdaeme,et al.  Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.

[96]  C. Lidman,et al.  The Redshift of the Gravitationally Lensed Radio Source PKS 1830–211 , 1999, astro-ph/9902317.

[97]  B. Zauderer,et al.  Spatial and Temporal Variations in Small-Scale Galactic H I Structure toward 3C 138 , 2005, astro-ph/0505080.

[98]  F. Briggs Test of a class of models for the variable absorption lines in AO 0235+164 , 1983 .

[99]  C. Kochanek,et al.  LensClean : an algorithm for inverting extended, gravitationally lensed images with application to the radio ring lens PKS 1830-211 , 1992 .

[100]  S. Poppi,et al.  A RADIO-POLARIZATION AND ROTATION MEASURE STUDY OF THE GUM NEBULA AND ITS ENVIRONMENT , 2015, 1502.06296.

[101]  R. Nan,et al.  Changes in the measured image separation of the gravitational lens system PKS 1830-211 , 2003, astro-ph/0301197.

[102]  R. Porcas,et al.  Multi-epoch VLBA 15 and 43 GHz observations of the gravitational lens PKS 1830-211: Extending VLBI towards the micro-arcsecond scale , 1997 .

[103]  F. Combes,et al.  The redshift of the gravitational lens of PKS1830–211 determined from molecular absorption lines , 1996, Nature.

[104]  Martha P. Haynes,et al.  Extragalactic HI surveys , 2015, 1510.04660.

[105]  Tommy Wiklind,et al.  The Complex Molecular Absorption Line System at z = 0.886 toward PKS 1830–211 , 1997 .

[106]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[107]  M. Zwaan,et al.  Probing the jet base of the blazar PKS 1830−211 from the chromatic variability of its lensed images - Serendipitous ALMA observations of a strong gamma-ray flare , 2013, 1309.0638.

[108]  J. Lehár,et al.  HST Observations and Models of The Gravitational Lens System MG 0414+0534 , 1996, astro-ph/9612182.