Distribution and Kinematics of O VI in the Galactic Halo

Far-Ultraviolet Spectroscopic Explorer (FUSE) spectra of 100 extragalactic objects and two distant halo stars are analyzed to obtain measures of O VI λλ1031.93, 1037.62 absorption along paths through the Milky Way thick disk/halo. Strong O VI absorption over the velocity range from -100 to 100 km s-1 reveals a widespread but highly irregular distribution of O VI, implying the existence of substantial amounts of hot gas with T ∼ 3 × 105 K in the Milky Way thick disk/halo. The integrated column density, log [N(O VI) cm-2], ranges from 13.85 to 14.78 with an average value of 14.38 and a standard deviation of 0.18. Large irregularities in the gas distribution are found to be similar over angular scales extending from <1° to 180°, implying a considerable amount of small- and large-scale structure in the absorbing gas. The overall distribution of O VI is not well described by a symmetrical plane-parallel layer of patchy O VI absorption. The simplest departure from such a model that provides a reasonable fit to the observations is a plane-parallel patchy absorbing layer with an average O VI midplane density of n0(O VI) = 1.7 × 10-8 cm-3, a scale height of ∼2.3 kpc, and a ∼0.25 dex excess of O VI in the northern Galactic polar region. The distribution of O VI over the sky is poorly correlated with other tracers of gas in the halo, including low- and intermediate-velocity H I, Hα emission from the warm ionized gas at ∼104 K, and hot X-ray-emitting gas at ∼106 K. The O VI has an average velocity dispersion, b ≈ 60 km s-1, and standard deviation of 15 km s-1. Thermal broadening alone cannot explain the large observed profile widths. The average O VI absorption velocities toward high-latitude objects (|b| > 45°) range from -46 to 82 km s-1, with a high-latitude sample average of 0 km s-1 and a standard deviation of 21 km s-1. High positive velocity O VI absorbing wings extending from ∼100 to ∼250 km s-1 observed along 21 lines of sight may be tracing the flow of O VI into the halo. A combination of models involving the radiative cooling of hot fountain gas, the cooling of supernova bubbles in the halo, and the turbulent mixing of warm and hot halo gases is required to explain the presence of O VI and other highly ionized atoms found in the halo. The preferential venting of hot gas from local bubbles and superbubbles into the northern Galactic polar region may explain the enhancement of O VI in the north. If a fountain flow dominates, a mass flow rate of approximately 1.4 M⊙ yr-1 of cooling hot gas to each side of the Galactic plane with an average density of 10-3 cm-3 is required to explain the average value of log [N(O VI) sin |b|] observed in the southern Galactic hemisphere. Such a flow rate is comparable to that estimated for the Galactic intermediate-velocity clouds.

[1]  D. York,et al.  The Far Ultraviolet Spectroscopic Explorer Survey of O VI Absorption in and near the Galaxy , 2003 .

[2]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[3]  B. Savage,et al.  Far-Ultraviolet Spectroscopic Explorer Observations of Degree-Scale Variations in Galactic Halo O VI , 2002 .

[4]  T. Heckman,et al.  On the Physical Origin of O VI Absorption-Line Systems , 2002, astro-ph/0205556.

[5]  B. Savage,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar O VI Absorption in the Small Magellanic Cloud , 2002 .

[6]  S. Friedman,et al.  The Global Content, Distribution, and Kinematics of Interstellar O VI in the Large Magellanic Cloud , 2001, astro-ph/0111566.

[7]  B. Savage,et al.  IUE Absorption-Line Observations of the Moderately and Highly Ionized Interstellar Medium toward 164 Early-Type Stars , 2001 .

[8]  B. Gibson,et al.  High-Velocity Cloud Complex C: Galactic Fuel or Galactic Waste? , 2001, astro-ph/0109220.

[9]  B. Savage,et al.  Far-Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption toward 3C 273 , 2001, astro-ph/0108047.

[10]  D. Cox,et al.  A Useful Approximation to the Cooling Coefficient of Trace Elements , 2001, astro-ph/0105533.

[11]  B. Savage,et al.  The Diversity of High- and Intermediate-Velocity Clouds: Complex C versus IV Arch , 2001, astro-ph/0105466.

[12]  O. H. W. Siegmund,et al.  Observations of O VI Emission from the Diffuse Interstellar Medium , 2001, astro-ph/0105278.

[13]  R. Wimmer–Schweingruber Solar and Galactic Composition , 2001 .

[14]  B. Wakker Distances and Metallicities of High- and Intermediate-Velocity Clouds , 2001, astro-ph/0102147.

[15]  B. Savage,et al.  The FUSE Spectrum of PG 0804+761: A Study of Atomic and Molecular Gas in the Lower Galactic Halo and Beyond , 2000, astro-ph/0010343.

[16]  D. York,et al.  Far Ultraviolet Spectroscopic Explorer Observations of O VI Absorption in the Galactic Halo , 2000 .

[17]  B. Gibson,et al.  Far Ultraviolet Spectroscopic Explorer Observations of O VI in High-Velocity Clouds , 2000 .

[18]  B. Gibson,et al.  Metal Abundances in the Magellanic Stream , 2000, astro-ph/0007078.

[19]  M. Freyberg,et al.  A Catalog of Soft X-Ray Shadows, and More Contemplation of the ¼ keV Background , 2000 .

[20]  B. P. Wakker,et al.  Accretion of low-metallicity gas by the Milky Way , 1999, Nature.

[21]  B. Savage,et al.  GHRS and ORFEUS II Observations of the Highly Ionized Interstellar Medium toward ESO 141-055 , 1999, astro-ph/9905343.

[22]  R. Shelton Simulations of Supernova Remnants in Diffuse Media and Their Application to the Lower Halo of the Milky Way. I. The High-Stage Ions , 1998 .

[23]  J. Kruk,et al.  Far-Ultraviolet Spectroscopy of PG 1159 Stars with the Hopkins Ultraviolet Telescope , 1998 .

[24]  L. Koesterke,et al.  Determination of Mass-Loss Rates of PG 1159 Stars from Far-Ultraviolet Spectroscopy , 1998 .

[25]  S. Bowyer,et al.  ORFEUS II Far-Ultraviolet Observations of 3C 273: Interstellar and Intergalactic Absorption Lines , 1998, astro-ph/9804160.

[26]  Paul P. Plucinsky,et al.  Progress on Establishing the Spatial Distribution of Material Responsible for the 1/4 keV Soft X-Ray Diffuse Background Local and Halo Components , 1998 .

[27]  W. Sargent,et al.  The Metallicity and Dust Content of HVC 287.5+22.5+240: Evidence for a Magellanic Clouds Origin , 1997, astro-ph/9710045.

[28]  R. Davies,et al.  Optical and H I studies of high- and intermediate-velocity gas towards Complex A , 1997 .

[29]  Dan McCammon,et al.  ROSAT Survey Diffuse X-Ray Background Maps. II. , 1997 .

[30]  B. Savage,et al.  Absorption by Highly Ionized Interstellar Gas Along Extragalactic and Galactic Sight Lines , 1997 .

[31]  B. Savage,et al.  High-Resolution Ultraviolet Observations of the Highly Ionized Interstellar Gas toward Radio Loops I and IV , 1997 .

[32]  Jonathan P. Williams,et al.  The Luminosity Function of OB Associations in the Galaxy , 1997 .

[33]  S. Bowyer,et al.  Coronal Gas in the Halo. II. ORFEUS Observations of Galactic Halo Stars , 1996 .

[34]  E. Jenkins,et al.  A Procedure for Correcting the Apparent Optical Depths of Moderately Saturated Interstellar Absorption Lines , 1996, astro-ph/9605010.

[35]  J. L. Spitzer Highly Ionized Interstellar Atoms--Heated, Cooled, or Mixed? , 1996 .

[36]  K. Kuntz,et al.  Intermediate-Velocity Gas in the North Galactic Hemisphere: H i Studies , 1996 .

[37]  B. Savage,et al.  Probing the Galactic Disk and Halo. III. The Galactic and Intergalactic Sight Line to H1821+643 , 1995 .

[38]  L. Gardiner,et al.  N-body Simulations of the Small Magellanic Cloud and the Magellanic Stream , 1995, astro-ph/9503095.

[39]  F. Bresolin,et al.  Large scale structure of the ionized gas in the magellanic clouds , 1995 .

[40]  J. Shull,et al.  Highly ionized gas in the Galactic halo , 1994 .

[41]  D. Cox,et al.  Evolution of Supernova Remnant Bubbles in a Warm Diffuse Medium: Survey of Results from One-dimensional Models and Their Impact on Estimates of Interstellar Porosity , 1993 .

[42]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[43]  J. Blades,et al.  Interstellar MG II and C IV Absorption toward Markarian 205 by NGC 4319: an ``Optically Thick'' QSO Absorption System , 1993 .

[44]  A. Davidsen Far-Ultraviolet Astronomy on the Astro-1 Space Shuttle Mission , 1993, Science.

[45]  D. Cox,et al.  Completing the evolution of supernova remnants and their bubbles , 1992 .

[46]  B. Savage,et al.  Observations of Highly Ionized Gas in the Galactic Halo , 1992 .

[47]  J. Raymond Microflare heating of the galactic halo , 1992 .

[48]  C. Gehman,et al.  Vertical distribution and support of galactic H I , 1991 .

[49]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[50]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[51]  P. Shapiro,et al.  NEW RESULTS CONCERNING THE GALACTIC FOUNTAIN , 1991 .

[52]  B. Savage,et al.  The distribution of interstellar Al III away from the Galactic plane , 1990 .

[53]  K. Borkowski,et al.  Radiative magnetized thermal conduction fronts , 1990 .

[54]  J. Bregman,et al.  Low-temperature Galactic fountains , 1990 .

[55]  Konrad Kuijken,et al.  The mass distribution in the galactic disc – II. Determination of the surface mass density of the galactic disc near the Sun , 1989 .

[56]  R. J. Reynolds The column density and scale height of free electrons in the galactic disk , 1989 .

[57]  R. McCray,et al.  Superbubble blowout dynamics , 1989 .

[58]  J. Bloemen On stable hydrostatic equilibrium configurations of the galaxy and implications for its halo , 1987 .

[59]  D. Massa,et al.  Highly ionized interstellar gas located in the Galactic disk and halo , 1987 .

[60]  G. Morfill,et al.  A model of static cosmic-ray-supported galactic coronae , 1986 .

[61]  R. Chevalier,et al.  Highly ionized atoms in cooling gas , 1986 .

[62]  R. McCray,et al.  Supershells and propagating star formation , 1986 .

[63]  D. Clemens Massachusetts-Stony Brook Galactic plane CO survey: the galactic disk rotation curve. , 1985 .

[64]  M. Fich,et al.  The fraction of high velocity dispersion H I in the Galaxy , 1985 .

[65]  R. Chevalier,et al.  A cosmic-ray supported galactic corona , 1984 .

[66]  A. Dupree,et al.  White dwarfs and the interstellar medium , 1983 .

[67]  J. Ostriker,et al.  Supernova remnant revolution in an inhomogeneous medium. I - Numerical models , 1981 .

[68]  M. Kafatos,et al.  Stellar winds, supernovae, and the origin of the H I supershells , 1980 .

[69]  J. Bregman,et al.  The galactic fountain of high-velocity clouds. , 1980 .

[70]  E. Jenkins,et al.  Coronal gas in the Galaxy. II - A statistical analysis of O VI absorptions , 1978 .

[71]  E. B. Jenkins,et al.  Coronal gas in the Galaxy. I - A new survey of interstellar O VI , 1978 .

[72]  P. Shapiro,et al.  Consequences of a New Hot Component of the Interstellar Medium , 1976 .

[73]  L. Spitzer On a Possible Interstellar Galactic Corona. , 1956 .

[74]  T. Rauch,et al.  New analyses of helium-rich pre-white dwarfs , 1995 .

[75]  Mitchell C. Begelman,et al.  Turbulent mixing layers in the interstellar medium of galaxies , 1993 .

[76]  A. Agnès,et al.  Strasbourg-ESO Catalogue of Galactic Planetary Nebulae , 1993 .

[77]  Stephen C. Russell,et al.  Abundances of the heavy elements in the Magellanic Clouds. III - Interpretation of results , 1992 .

[78]  L. Spitzer Theories of the Hot Interstellar Gas , 1990 .