A Chronicle Review of Nonsilicon (Sn, Sb, Ge)‐Based Lithium/Sodium‐Ion Battery Alloying Anodes

DOI: 10.1002/smtd.202000218 and zero emission.[3–5] Both traditional and emerging automobile enterprises are investing considerable resources to develop the new-energy vehicles. Moreover, the imminent exhaustion of fossil fuel resources and increasing environmental problems influence every corner of the Earth, which needs clean energy to improve such predicament.[6,7] At present, solar and wind energy have been developed to a mature stage and applied globally. However, how to integrate these renewable but inconstant energies into electrical supply grids smoothly and safety is still a big challenge.[8] Therefore, developing low-cost, large-scale electrical energy storage (EES) is considered as the necessary strategy and key enabler for future smart and green grids.[9,10] All these products need a high energy density power source for longer endurance time and better efficiency. The invention of the lithium-ion battery (LIB) in the 1990s started a new era, and a better portable power source has always been the persistent pursuit for both academic and industrial worlds in the following years. The birth of LIB endured several tens of years coupled with the efforts from top scientists all over the world.

[1]  Yi Cui,et al.  Energy storage: The future enabled by nanomaterials , 2019, Science.

[2]  Nakia L. Simon,et al.  Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries , 2019, Joule.

[3]  R. Stolkin,et al.  Recycling lithium-ion batteries from electric vehicles , 2019, Nature.

[4]  Yi Cui,et al.  Challenges and opportunities towards fast-charging battery materials , 2019, Nature Energy.

[5]  Qianqian Chang,et al.  Mesoporous Sn4P3-graphene aerogel composite as a high-performance anode in sodium ion batteries , 2019, Applied Surface Science.

[6]  Yajie Liu,et al.  Approaching high-performance potassium-ion batteries via advanced design strategies and engineering , 2019, Science Advances.

[7]  Xiao‐Chen Liu,et al.  Porous germanium enabled high areal capacity anode for lithium-ion batteries , 2019, Composites Part B: Engineering.

[8]  Q. Yang,et al.  Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries , 2019, Electrochemistry Communications.

[9]  Yanli Wang,et al.  Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries , 2019, Chemical Engineering Journal.

[10]  Haowan Wu,et al.  Facile Synthesis of Amorphous Ge Supported by Ni Nanopyramid Arrays as an Anode Material for Sodium‐Ion Batteries , 2019, ChemistryOpen.

[11]  J. Xu,et al.  Few-Layered Tin Sulfide Nanosheets Supported on Reduced Graphene Oxide as a High-Performance Anode for Potassium-Ion Batteries. , 2019, Small.

[12]  Qiang Liu,et al.  Double conductivity-improved porous Sn/Sn4P3@carbon nanocomposite as high performance anode in Lithium-ion batteries. , 2019, Journal of colloid and interface science.

[13]  Chunyan Xu,et al.  High-rate-induced capacity evolution of mesoporous C@SnO2@C hollow nanospheres for ultra-long cycle lithium-ion batteries , 2019, Journal of Power Sources.

[14]  S. Chinta,et al.  SnO-GeO2-Sb2O3 glass anode network mixed with different Ba2+ fractions: Investigations on Na-ion storage capacity and stability , 2019, Journal of Non-Crystalline Solids.

[15]  Xiulin Fan,et al.  Extremely stable antimony–carbon composite anodes for potassium-ion batteries , 2019, Energy & Environmental Science.

[16]  H. Zeng,et al.  Tailoring natural layered β-phase antimony into few layer antimonene for Li storage with high rate capabilities , 2019, Journal of Materials Chemistry A.

[17]  Cheol‐Min Park,et al.  New high-energy-density GeTe-based anodes for Li-ion batteries , 2019, Journal of Materials Chemistry A.

[18]  W. Yoon,et al.  Amorphous germanium oxide nanobubbles for lithium-ion battery anode , 2019, Materials Research Bulletin.

[19]  M. Leung,et al.  Microwave-Hydrothermal Synthesis of Hierarchical Sb2 WO6 Nanostructures as a New Anode Material for Sodium Storage , 2019, ChemistrySelect.

[20]  Dan Li,et al.  SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries , 2019, Journal of Electroanalytical Chemistry.

[21]  Yi Shi,et al.  GeO2 Encapsulated Ge Nanostructure with Enhanced Lithium‐Storage Properties , 2019, Advanced Functional Materials.

[22]  Seung Geol Lee,et al.  Sb2Te3-TiC-C nanocomposites for the high-performance anode in lithium-ion batteries , 2019, Electrochimica Acta.

[23]  Wan-Jing Yu,et al.  In-situ Grown SnS2 Nanosheets on rGO as an Advanced Anode Material for Lithium and Sodium Ion Batteries , 2018, Front. Chem..

[24]  Q. Jiang,et al.  Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. , 2018, Physical chemistry chemical physics : PCCP.

[25]  K. Yin,et al.  Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries , 2018, Nano Energy.

[26]  P. Chu,et al.  Sn-C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes , 2018, Nano Energy.

[27]  Yong Jiang,et al.  One-step hydrothermal reduction synthesis of tiny Sn/SnO2 nanoparticles sandwiching between spherical graphene with excellent lithium storage cycling performances , 2018, Electrochimica Acta.

[28]  M. Winter,et al.  Before Li Ion Batteries. , 2018, Chemical reviews.

[29]  Xue Li,et al.  A Cellulose Derived Nanotubular MoO3 /SnO2 Composite with Superior Lithium Storage Properties , 2018, ChemistrySelect.

[30]  Jian Yang,et al.  Layered-Structure SbPO4/Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries. , 2018, ACS nano.

[31]  S. Hyun,et al.  High‐Pressure Evaporation‐Based Nanoporous Black Sn for Enhanced Performance of Lithium‐Ion Battery Anodes , 2018, Particle & Particle Systems Characterization.

[32]  Yiqian Wang,et al.  SnO2 nanocrystal-Fe2O3 nanorod hybrid structures: an anode material with enhanced lithium storage capacity , 2018, Journal of Solid State Electrochemistry.

[33]  Hongxun Yang,et al.  A New Hierarchical α-MnO2-Nanotube@SnO2 Heterostructure as an Advanced Anode for High-Performance Lithium-Ion Batteries , 2018, Journal of Nanoscience and Nanotechnology.

[34]  H. Yang,et al.  Germagraphene as a promising anode material for lithium-ion batteries predicted from first-principles calculations. , 2018, Nanoscale horizons.

[35]  S. Tolbert,et al.  Enhanced Cycling Stability of Macroporous Bulk Antimony‐Based Sodium‐Ion Battery Anodes Enabled through Active/Inactive Composites , 2018, Advanced Energy Materials.

[36]  Linhua Xia,et al.  α-Fe 2 O 3 /SnO 2 heterostructure composites: A high stability anode for lithium-ion battery , 2018, Materials Research Bulletin.

[37]  S. Shi,et al.  Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition , 2018, Chemical Engineering Journal.

[38]  S. Liang,et al.  S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries , 2018 .

[39]  Seong‐Hyeon Hong,et al.  Sn4P3–C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries , 2018 .

[40]  Zhen Zhou,et al.  Micro/Nanostructure‐Dependent Electrochemical Performances of Sb 2 O 3 Micro‐Bundles as Anode Materials for Sodium‐Ion Batteries , 2018, ChemElectroChem.

[41]  Jong-Keun Ha,et al.  Synthesis and Electrochemical Properties of Amorphous Carbon Coated Sn Anode Material for Lithium Ion Batteries and Sodium Ion Batteries. , 2018, Journal of nanoscience and nanotechnology.

[42]  Yong Jiang,et al.  Sandwiched spherical tin dioxide/graphene with a three-dimensional interconnected closed pore structure for lithium storage. , 2018, Nanoscale.

[43]  C. Mullins,et al.  A phase-field model integrating reaction-diffusion kinetics and elasto-plastic deformation with application to lithiated selenium-doped germanium electrodes , 2018, International Journal of Mechanical Sciences.

[44]  Q. Guo,et al.  A general method for high-performance Li-ion battery Ge composites electrodes from ionic liquid electrodeposition without binders or conductive agents: The cases of CNTs, RGO and PEDOT , 2018, Chemical Engineering Journal.

[45]  Z. Wen,et al.  Scalable synthesis of hierarchical porous Ge/rGO microspheres with an ultra-long cycling life for lithium storage , 2018, Journal of Power Sources.

[46]  Jijun Zhao,et al.  Inverse Capacity Growth and Pocket Effect in SnS2 Semifilled Carbon Nanotube Anode. , 2018, ACS nano.

[47]  L. Luo,et al.  Stress-Tolerant Nanoporous Germanium Nanofibers for Long Cycle Life Lithium Storage with High Structural Stability. , 2018, ACS nano.

[48]  Y. Kang,et al.  Lithium-ion storage performances of sunflower-like and nano-sized hollow SnO2 spheres by spray pyrolysis and the nanoscale Kirkendall effect. , 2018, Nanoscale.

[49]  Zhiqun Lin,et al.  Robust SnO2-x Nanoparticle-Impregnated Carbon Nanofibers with Outstanding Electrochemical Performance for Advanced Sodium-Ion Batteries. , 2018, Angewandte Chemie.

[50]  Yitai Qian,et al.  Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. , 2018, Nanoscale.

[51]  Shun Mao,et al.  Organometallic Precursor-Derived SnO2/Sn-Reduced Graphene Oxide Sandwiched Nanocomposite Anode with Superior Lithium Storage Capacity. , 2018, ACS applied materials & interfaces.

[52]  Maxwell C. Schulze,et al.  Electrodeposited thin-film CuxSb anodes for Li-ion batteries: enhancement of cycle life via tuning of film composition and engineering of the film-substrate interface , 2018 .

[53]  Hanqing Zhao,et al.  Low crystallinity SnS encapsulated in CNTs decorated and S-doped carbon nanofibers as excellent anode material for sodium-ion batteries , 2018, Electrochimica Acta.

[54]  Tingting Li,et al.  A novel “plane-line-plane” nanostructure of the sandwich-like CNTs@SnO2/Ti3C2Tx 3D nanocomposite as a promising anode for lithium-ion batteries , 2018, Ceramics International.

[55]  L. Mai,et al.  Bottom‐Up Confined Synthesis of Nanorod‐in‐Nanotube Structured Sb@N‐C for Durable Lithium and Sodium Storage , 2018 .

[56]  J. Bao,et al.  Novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improved sodium storage performance , 2018 .

[57]  Minh Xuan Tran,et al.  Self-Relaxant Superelastic Matrix Derived from C60 Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries. , 2018, ACS nano.

[58]  P. Frontera,et al.  Are Electrospun Fibrous Membranes Relevant Electrode Materials for Li‐Ion Batteries? The Case of the C/Ge/GeO2 Composite Fibers , 2018 .

[59]  Yong Cheng,et al.  Facile synthesis of one-dimensional hollow Sb2O3@TiO2 composites as anode materials for lithium ion batteries , 2018, Journal of Power Sources.

[60]  T. Zhai,et al.  Healable Structure Triggered by Thermal/Electrochemical Force in Layered GeSe2 for High Performance Li‐Ion Batteries , 2018 .

[61]  Haiyang Liao,et al.  Controllable synthesis of SnO 2 @carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries , 2018 .

[62]  S. Majumder,et al.  Melt impregnation as a post processing treatment for performance enhancement in high capacity 3D microporous tin-copper-nickel intermetallic anode for Li-ion battery supported by electrodeposited nickel scaffold: A structural study , 2018 .

[63]  Ming Zhang,et al.  Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification , 2018 .

[64]  L. Stievano,et al.  Elucidating the origin of superior electrochemical cycling performance: new insights on sodiation–desodiation mechanism of SnSb from operando spectroscopy , 2018 .

[65]  M. Shaijumon,et al.  Antimony oxychloride/graphene aerogel composite as anode material for sodium and lithium ion batteries , 2018 .

[66]  Qian Wang,et al.  Stanene nanomeshes as anode materials for Na-ion batteries , 2018 .

[67]  Xiao-yan Wang,et al.  Scalable Synthesis of Hierarchical Antimony/Carbon Micro-/Nanohybrid Lithium/Sodium-Ion Battery Anodes Based on Dimethacrylate Monomer , 2018, Acta Metallurgica Sinica (English Letters).

[68]  Marc D. Walter,et al.  Monodisperse CoSn2 and FeSn2 nanocrystals as high-performance anode materials for lithium-ion batteries. , 2018, Nanoscale.

[69]  Shubin Yang,et al.  Synergic antimony–niobium pentoxide nanomeshes for high-rate sodium storage , 2018 .

[70]  Qiaobao Zhang,et al.  Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. , 2018, ACS nano.

[71]  Guihua Yu,et al.  Double-Network Nanostructured Hydrogel-Derived Ultrafine Sn-Fe Alloy in Three-Dimensional Carbon Framework for Enhanced Lithium Storage. , 2018, Nano letters.

[72]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[73]  Cheol‐Min Park,et al.  Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility. , 2018, ACS nano.

[74]  Tianshuai Wang,et al.  A Top‐Down Strategy toward SnSb In‐Plane Nanoconfined 3D N‐Doped Porous Graphene Composite Microspheres for High Performance Na‐Ion Battery Anode , 2018, Advanced materials.

[75]  Zhe-fei Li,et al.  In Situ EXAFS‐Derived Mechanism of Highly Reversible Tin Phosphide/Graphite Composite Anode for Li‐Ion Batteries , 2018 .

[76]  Y. Kang,et al.  Design and Synthesis of Spherical Multicomponent Aggregates Composed of Core-Shell, Yolk-Shell, and Hollow Nanospheres and Their Lithium-Ion Storage Performances. , 2018, Small.

[77]  F. Du,et al.  Amorphous Tin‐Based Composite Oxide: A High‐Rate and Ultralong‐Life Sodium‐Ion‐Storage Material , 2018 .

[78]  Yitai Qian,et al.  Mesoporous Hollow Ge Microspheres Prepared via Molten-Salt Metallothermic Reaction for High-Performance Li-Storage Anode. , 2018, ACS applied materials & interfaces.

[79]  S. Jung,et al.  The origin of excellent rate and cycle performance of Sn4P3 binary electrodes for sodium-ion batteries , 2018 .

[80]  Lele Peng,et al.  Cyanogel-Enabled Homogeneous Sb-Ni-C Ternary Framework Electrodes for Enhanced Sodium Storage. , 2018, ACS nano.

[81]  Yitai Qian,et al.  Amorphous mesoporous GeOx anode for Na-ion batteries with high capacity and long lifespan , 2018, Royal Society Open Science.

[82]  Yue Liu,et al.  C/Sn/RGO Nanocomposites as Higher Initial Coulombic Efficiency Anode for Sodium‐Ion Batteries , 2017 .

[83]  M. Alfredsson,et al.  In-Depth Analysis of the Conversion Mechanism of TiSnSb vs Li by Operando Triple-Edge X-ray Absorption Spectroscopy: a Chemometric Approach , 2017 .

[84]  Yi Shi,et al.  Porous Nano-Structured GeO2 for High Performance Lithium Storage , 2017 .

[85]  Yu Zhang,et al.  Alloy‐Based Anode Materials toward Advanced Sodium‐Ion Batteries , 2017, Advanced materials.

[86]  D. He,et al.  Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries. , 2017, Small.

[87]  Yi Shi,et al.  In situ reaction synthesis of GeO2/RGO nanocomposite for high performance lithium storage , 2017 .

[88]  Xianyou Wang,et al.  Template-Free Synthesis of Sb2S3 Hollow Microspheres as Anode Materials for Lithium-Ion and Sodium-Ion Batteries , 2017, Nano-Micro Letters.

[89]  O. Schmidt,et al.  Reinforcing Germanium Electrode with Polymer Matrix Decoration for Long Cycle Life Rechargeable Lithium Ion Batteries. , 2017, ACS applied materials & interfaces.

[90]  Xingguo Qi,et al.  Yolk-shell structured Sb@C anodes for high energy Na-ion batteries , 2017 .

[91]  Chenglong Zhao,et al.  Advanced Nanostructured Anode Materials for Sodium-Ion Batteries. , 2017, Small.

[92]  G. Henkelman,et al.  Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance. , 2017, ACS nano.

[93]  Ling Huang,et al.  Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating , 2017 .

[94]  Ping Wu,et al.  Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage. , 2017, Journal of colloid and interface science.

[95]  Y. Domi,et al.  LaSn3 as a novel anode material for Na-ion battery , 2017 .

[96]  S. Passerini,et al.  Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance. , 2017, ACS applied materials & interfaces.

[97]  T. Zhai,et al.  Reviving Lithium‐Metal Anodes for Next‐Generation High‐Energy Batteries , 2017, Advanced materials.

[98]  Huigang Zhang,et al.  Porous-Nickel-Scaffolded Tin-Antimony Anodes with Enhanced Electrochemical Properties for Li/Na-Ion Batteries. , 2017, ACS applied materials & interfaces.

[99]  F. Endres,et al.  Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries. , 2017, Nanoscale.

[100]  Xifei Li,et al.  Antimony (IV) Oxide Nanorods/Reduced Graphene Oxide as the Anode Material of Sodium-ion Batteries with Excellent Electrochemical Performance , 2017 .

[101]  Wei Wei,et al.  Synthesis of graphene/Ca2Ge7O16 nanofibers composite as anode materials for lithium-ion batteries , 2017 .

[102]  K. Ryan,et al.  Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes , 2017, Nanotechnology.

[103]  Cheol‐Min Park,et al.  Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes. , 2017, ACS nano.

[104]  Chunsheng Wang,et al.  Pipe-Wire TiO2-Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries. , 2017, Nano letters.

[105]  Limin Wang,et al.  Two-step oxidation of bulk Sb to one-dimensional Sb 2 O 4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries , 2017 .

[106]  L. Stievano,et al.  SnSb electrodes for Li-ion batteries: the electrochemical mechanism and capacity fading origins elucidated by using operando techniques , 2017 .

[107]  Soojin Park,et al.  Fast, Scalable Synthesis of Micronized Ge3N4@C with a High Tap Density for Excellent Lithium Storage , 2017 .

[108]  Qiang Ru,et al.  Ternary Sn-Sb-Co alloy particles embedded in reduced graphene oxide as lithium ion battery anodes , 2017 .

[109]  D. Yu,et al.  GeO2 Thin Film Deposition on Graphene Oxide by the Hydrogen Peroxide Route: Evaluation for Lithium-Ion Battery Anode. , 2017, ACS applied materials & interfaces.

[110]  Nana Wang,et al.  Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries , 2017, Nano Research.

[111]  Zhiwei Zhang,et al.  Ge Nanoparticles Encapsulated in Interconnected Hollow Carbon Boxes as Anodes for Sodium Ion and Lithium Ion Batteries with Enhanced Electrochemical Performance , 2017 .

[112]  Shasha Zheng,et al.  Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries , 2017 .

[113]  Haoshen Zhou,et al.  Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage , 2017 .

[114]  Yan Yu,et al.  New Nanoconfined Galvanic Replacement Synthesis of Hollow Sb@C Yolk-Shell Spheres Constituting a Stable Anode for High-Rate Li/Na-Ion Batteries. , 2017, Nano letters.

[115]  Wenxi Zhao,et al.  Mesh-structured N-doped graphene@Sb2Se3 hybrids as an anode for large capacity sodium-ion batteries. , 2017, Journal of colloid and interface science.

[116]  Xifei Li,et al.  Porous graphene anchored with Sb/SbOx as sodium-ion battery anode with enhanced reversible capacity and cycle performance , 2017 .

[117]  Hongwei Zhang,et al.  Tailored Yolk–Shell Sn@C Nanoboxes for High‐Performance Lithium Storage , 2017 .

[118]  Kangli Wang,et al.  A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode , 2017 .

[119]  Jian Yang,et al.  One-Dimensional Yolk-Shell Sb@Ti-O-P Nanostructures as a High-Capacity and High-Rate Anode Material for Sodium Ion Batteries. , 2017, ACS Applied Materials and Interfaces.

[120]  David Rooney,et al.  3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery , 2017, Nature Communications.

[121]  Junsheng Zhu,et al.  Preparation of Sn-Cu-graphene nanocomposites with superior reversible lithium ion storage , 2016 .

[122]  L. Mai,et al.  Ultralong Sb2Se3 Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries. , 2016, ACS applied materials & interfaces.

[123]  C. Villevieille,et al.  MnSn2 negative electrodes for Na-ion batteries: a conversion-based reaction dissected , 2016 .

[124]  G. Cui,et al.  High performance germanium-based anode materials , 2016 .

[125]  E. D. Jackson,et al.  Copper Antimonide Nanowire Array Lithium Ion Anodes Stabilized by Electrolyte Additives. , 2016, ACS applied materials & interfaces.

[126]  E. D. Jackson,et al.  Evaluation of the Electrochemical Properties of Crystalline Copper Antimonide Thin Film Anodes for Lithium Ion Batteries Produced by Single Step Electrodeposition , 2016 .

[127]  Limin Wang,et al.  Fabrication of One-Dimensional Sb@TiO2 Composites as Anode Materials for Lithium-Ion Batteries , 2016 .

[128]  Hang Wei,et al.  High-performance Sb2S3/Sb anode materials for Li-ion batteries , 2016 .

[129]  Kefeng Wang,et al.  Green synthesis of GeO2/graphene composites as anode material for lithium-ion batteries with high capacity , 2016 .

[130]  W. Han,et al.  Structural Evolution of 3D Nano‐Sn/Reduced Graphene Oxide Composite from a Sandwich‐like Structure to a Curly Sn@Carbon Nanocage‐like Structure during Lithiation/Delithiation Cycling , 2016 .

[131]  Yan Yu,et al.  Influence of Carbon Matrix Dimensions on the Electrochemical Performance of Germanium Oxide in Lithium‐Ion Batteries , 2016 .

[132]  Tie-hu Li,et al.  Tin-based anode materials with well-designed architectures for next-generation lithium-ion batteries , 2016 .

[133]  Linyu Yang,et al.  Yolk-Shell Sn@C Eggette-like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[134]  Zhen Zhang,et al.  A facile route to dually protected Ge@GeO2 composites as anode materials for lithium ion battery , 2016 .

[135]  Xiong Wen Lou,et al.  Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries , 2016 .

[136]  Jong‐Heun Lee,et al.  Superior Na-ion storage properties of high aspect ratio SnSe nanoplates prepared by a spray pyrolysis process. , 2016, Nanoscale.

[137]  Yong Cheng,et al.  Facile synthesis of symmetric bundle-like Sb2S3 micron-structures and their application in lithium-ion battery anodes. , 2016, Chemical communications.

[138]  Jian Yang,et al.  Double‐Walled Sb@TiO2−x Nanotubes as a Superior High‐Rate and Ultralong‐Lifespan Anode Material for Na‐Ion and Li‐Ion Batteries , 2016, Advanced materials.

[139]  Cheol‐Min Park,et al.  Layered Sb2Te3 and its nanocomposite: a new and outstanding electrode material for superior rechargeable Li-ion batteries , 2016 .

[140]  P. Chu,et al.  Crumpled N-doped carbon nanotubes encapsulated with peapod-like Ge nanoparticles for high-rate and long-life Li-ion battery anodes , 2016 .

[141]  F. Pan,et al.  Core-Shell Sn-Ni-Cu-Alloy@Carbon Nanorods to Array as Three-Dimensional Anode by Nanoelectrodeposition for High-Performance Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[142]  Marc D. Walter,et al.  Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries , 2016 .

[143]  Kyeongse Song,et al.  SnS 3D Flowers with Superb Kinetic Properties for Anodic Use in Next-Generation Sodium Rechargeable Batteries. , 2016, Small.

[144]  Jing Zhang,et al.  Sandwich-like CNTs@SnO2/SnO/Sn anodes on three-dimensional Ni foam substrate for lithium ion batteries , 2016 .

[145]  X. Lou,et al.  Nanowire-templated formation of SnO2/carbon nanotubes with enhanced lithium storage properties. , 2016, Nanoscale.

[146]  Hui Xu,et al.  The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries , 2016 .

[147]  Shuling Liu,et al.  Synthesis of hollow spherical tin phosphides (Sn4P3) and their high adsorptive and electrochemical performance , 2016 .

[148]  Zaiping Guo,et al.  A New Strategy for Achieving a High Performance Anode for Lithium Ion Batteries—Encapsulating Germanium Nanoparticles in Carbon Nanoboxes , 2016 .

[149]  A. Heller,et al.  Simple Synthesis of Nanostructured Sn/Nitrogen-Doped Carbon Composite Using Nitrilotriacetic Acid as Lithium Ion Battery Anode , 2016 .

[150]  K. Bao,et al.  Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries. , 2016, Dalton transactions.

[151]  Bingan Lu,et al.  Core–Shell Ge@Graphene@TiO2 Nanofibers as a High‐Capacity and Cycle‐Stable Anode for Lithium and Sodium Ion Battery , 2016 .

[152]  B. Han,et al.  Synthesis of Functional Nanomaterials in Ionic Liquids , 2016, Advanced materials.

[153]  G. Shen,et al.  Flexible and free-standing ternary Cd2GeO4 nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance , 2016, Nanotechnology.

[154]  A. J. Morris,et al.  Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy , 2016, Journal of the American Chemical Society.

[155]  F. Du,et al.  Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium-Ion Storage Performance. , 2016, Chemistry.

[156]  Mingdeng Wei,et al.  Ge/GeO2-Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance. , 2016, ACS applied materials & interfaces.

[157]  K. Cho,et al.  Preparation of nanostructured Ge/GeO2 composite in carbon matrix as an anode material for lithium-ion batteries , 2016 .

[158]  Mi-Dan Cao,et al.  Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[159]  Ya‐Xia Yin,et al.  High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[160]  Lijia Liu,et al.  Reduced GeO2 Nanoparticles: Electronic Structure of a Nominal GeOx Complex and Its Stability under H2 Annealing , 2015, Scientific Reports.

[161]  Yan Yu,et al.  Graphene-Protected 3D Sb-based Anodes Fabricated via Electrostatic Assembly and Confinement Replacement for Enhanced Lithium and Sodium Storage. , 2015, Small.

[162]  Haoshen Zhou,et al.  Layered phosphorus-like GeP5: a promising anode candidate with high initial coulombic efficiency and large capacity for lithium ion batteries , 2015 .

[163]  Il-Doo Kim,et al.  Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries , 2015 .

[164]  Jun Liu,et al.  Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries , 2015 .

[165]  Weidong Zhou,et al.  Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[166]  Yan Yu,et al.  Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries , 2015 .

[167]  Yongchang Liu,et al.  Tin Nanodots Encapsulated in Porous Nitrogen‐Doped Carbon Nanofibers as a Free‐Standing Anode for Advanced Sodium‐Ion Batteries , 2015, Advanced materials.

[168]  F. Nobili,et al.  Enhanced stability of SnSb/graphene anode through alternative binder and electrolyte additive for lithium ion batteries application , 2015 .

[169]  S. Dou,et al.  Nitrogen-doped carbon nanofibers with effectively encapsulated GeO2 nanocrystals for highly reversible lithium storage , 2015 .

[170]  H. Cui,et al.  Ultrathin Hexagonal 2D Co₂GeO₄ Nanosheets: Excellent Li-Storage Performance and ex Situ Investigation of Electrochemical Mechanism. , 2015, ACS applied materials & interfaces.

[171]  H. Le,et al.  Uniform GeO2 dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries , 2015 .

[172]  G. Shen,et al.  Encapsulating Ca2Ge7O16 nanowires within graphene sheets as anode materials for lithium-ion batteries , 2015 .

[173]  Yan Yu,et al.  Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage. , 2015, Small.

[174]  M. Toney,et al.  Operando X-ray Studies of Crystalline Ge Anodes with Different Conductive Additives , 2015 .

[175]  Jun Chen,et al.  Sn–Al core–shell nanocomposite as thin film anode for lithium-ion batteries , 2015 .

[176]  Yongchang Liu,et al.  Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries , 2015, Nano Research.

[177]  Lin Gu,et al.  Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries , 2015 .

[178]  Jung Sang Cho,et al.  Nanofibers Comprising Yolk-Shell Sn@void@SnO/SnO₂ and Hollow SnO/SnO₂ and SnO₂ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties. , 2015, Small.

[179]  Xiaobo Ji,et al.  One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[180]  Xiaobo Ji,et al.  Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries , 2015 .

[181]  Y. Meng,et al.  Investigating the Energy Storage Mechanism of SnS2-rGO Composite Anode for Advanced Na-Ion Batteries , 2015 .

[182]  M. Toney,et al.  Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate , 2015 .

[183]  Yunhui Huang,et al.  Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries. , 2015, Small.

[184]  Tae-Hee Kim,et al.  Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[185]  Chunru Wang,et al.  Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries. , 2015, Nanoscale.

[186]  N. Birbilis,et al.  High capacity group-15 alloy anodes for Na-ion batteries: electrochemical and mechanical insights , 2015 .

[187]  Yun-Sung Lee,et al.  Research Progress on Negative Electrodes for Practical Li‐Ion Batteries: Beyond Carbonaceous Anodes , 2015 .

[188]  Y. Kang,et al.  Amorphous GeOx-Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[189]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[190]  Wei Chen,et al.  Carbonized common filter paper decorated with Sn@C nanospheres as additive-free electrodes for sodium-ion batteries , 2015 .

[191]  Hyuk-Sang Kwon,et al.  High-Performance Sb/Sb2 O3 Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries. , 2015, Small.

[192]  Yan Yu,et al.  Sn‐Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for High‐Rate and Long Life Li‐Ion Batteries , 2015 .

[193]  Xiaobo Ji,et al.  Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase , 2015 .

[194]  Y. Kang,et al.  General formation of tin nanoparticles encapsulated in hollow carbon spheres for enhanced lithium storage capability. , 2015, Small.

[195]  Ralph G Nuzzo,et al.  3D Scaffolded Nickel–Tin Li‐Ion Anodes with Enhanced Cyclability , 2015, Advanced materials.

[196]  Min Gyu Kim,et al.  Mesoporous Ge/GeO2/Carbon Lithium-Ion Battery Anodes with High Capacity and High Reversibility. , 2015, ACS nano.

[197]  P. Shen,et al.  Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries , 2015 .

[198]  R. Li,et al.  Nanostructued core-shell Sn nanowires @ CNTs with controllable thickness of CNT shells for lithium ion battery , 2015 .

[199]  Jian Qin,et al.  2D Space-Confined Synthesis of Few-Layer MoS2 Anchored on Carbon Nanosheet for Lithium-Ion Battery Anode. , 2015, ACS nano.

[200]  Chengxin Wang,et al.  Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance. , 2015, ACS nano.

[201]  A. Heller,et al.  High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material , 2015 .

[202]  Huawei Song,et al.  Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability , 2015 .

[203]  Liwei Lin,et al.  High Performance 3D Si/Ge Nanorods Array Anode Buffered by TiN/Ti Interlayer for Sodium‐Ion Batteries , 2015 .

[204]  Haiyan Lu,et al.  Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries , 2015 .

[205]  Marc D. Walter,et al.  Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Na-ion Batteries , 2015, Scientific Reports.

[206]  Min Gyu Kim,et al.  Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices. , 2015, ACS nano.

[207]  M. Kolahdouz,et al.  Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing , 2015, Journal of Materials Science: Materials in Electronics.

[208]  Bin Luo,et al.  Design and construction of three dimensional graphene-based composites for lithium ion battery applications , 2015 .

[209]  H. Le,et al.  Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries. , 2015, Nanoscale.

[210]  Yan Zhang,et al.  Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries , 2015 .

[211]  Cheol‐Min Park,et al.  Te/C nanocomposites for Li-Te Secondary Batteries , 2015, Scientific Reports.

[212]  F. Endres,et al.  Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. , 2015, Chemical communications.

[213]  Marc D. Walter,et al.  Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. , 2015, Nanoscale.

[214]  M. Kovalenko,et al.  A general synthesis strategy for monodisperse metallic and metalloid nanoparticles (In, Ga, Bi, Sb, Zn, Cu, Sn, and Their Alloys) via in situ formed metal long-chain amides , 2015 .

[215]  Wei Chen,et al.  Deflated Carbon Nanospheres Encapsulating Tin Cores Decorated on Layered 3-D Carbon Structures for Low-Cost Sodium Ion Batteries , 2015 .

[216]  Youngjin Kim,et al.  SnSe alloy as a promising anode material for Na-ion batteries. , 2015, Chemical communications.

[217]  Bingan Lu,et al.  SnO2 Nanorods on ZnO Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning as Anode Material for High-Performance Lithium-Ion Batteries , 2014 .

[218]  Young Jin Kim,et al.  High-capacity anode materials for sodium-ion batteries. , 2014, Chemistry.

[219]  L. Monconduit,et al.  High cycleability nano-GeO2/mesoporous carbon composite as enhanced energy storage anode material in Li-ion batteries , 2014 .

[220]  Charles E. Johnson,et al.  The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies , 2014 .

[221]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[222]  H. Cui,et al.  Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage. , 2014, ACS applied materials & interfaces.

[223]  Xiaodong Li,et al.  Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof , 2014 .

[224]  Yitai Qian,et al.  Coordination complex pyrolyzation for the synthesis of nanostructured GeO₂ with high lithium storage properties. , 2014, Chemical communications.

[225]  Yan Yu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[226]  J. Tominaga,et al.  Local structure of the SnTe topological crystalline insulator: Rhombohedral distortions emerging from the rocksalt phase , 2014 .

[227]  J. Bao,et al.  An SbOx/Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries , 2014 .

[228]  A. Manthiram,et al.  Mesoporous TiO2‐Sn/C Core‐Shell Nanowire Arrays as High‐Performance 3D Anodes for Li‐Ion Batteries , 2014 .

[229]  Jin-Woo Park,et al.  Charge–discharge properties of tin dioxide for sodium-ion battery , 2014 .

[230]  M. Winter,et al.  One-step synthesis of novel mesoporous three-dimensional GeO2 and its lithium storage properties , 2014 .

[231]  Zhen Zhou,et al.  Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. , 2014, Chemical communications.

[232]  Kai Cui,et al.  Activation with Li enables facile sodium storage in germanium. , 2014, Nano letters.

[233]  H. Le,et al.  Carbon‐Interconnected Ge Nanocrystals as an Anode with Ultra‐Long‐Term Cyclability for Lithium Ion Batteries , 2014 .

[234]  Xiaobo Ji,et al.  Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. , 2014, ACS applied materials & interfaces.

[235]  J. Switzer,et al.  Electrodeposited germanium nanowires. , 2014, ACS nano.

[236]  Zhiguo Wang,et al.  Modelling and simulation of electron-rich effect on Li diffusion in group IVA elements (Si, Ge and Sn) for Li ion batteries , 2014 .

[237]  A. Heller,et al.  Thin Nanocolumnar Ge0.9Se0.1 Films Are Rapidly Lithiated/Delithiated , 2014 .

[238]  Zhiqun Lin,et al.  CuGeO₃ nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2014, Nanoscale.

[239]  Yan Yu,et al.  Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. , 2014, ACS nano.

[240]  S. Gopukumar,et al.  rGO/nano Sb composite: a high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling , 2014 .

[241]  Yi Cui,et al.  Understanding Phase Transformation in Crystalline Ge Anodes for Li- Ion Batteries , 2014 .

[242]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[243]  Simon S. Woo,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[244]  Guoxiu Wang,et al.  Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery , 2014 .

[245]  Sulin Zhang,et al.  Germanium-Based Electrode Materials for Lithium-Ion Batteries , 2014 .

[246]  Xinping Ai,et al.  Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. , 2014, Nano letters.

[247]  H. Usui,et al.  Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition , 2014 .

[248]  Jun Chen,et al.  Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. , 2014, Nanoscale.

[249]  M. Kovalenko,et al.  Colloidal tin-germanium nanorods and their Li-ion storage properties. , 2014, ACS nano.

[250]  Marc D. Walter,et al.  Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. , 2014, Nano letters.

[251]  D. Choi,et al.  GeOx/Reduced Graphene Oxide Composite as an Anode for Li‐Ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance , 2014 .

[252]  H. Cui,et al.  Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability , 2014 .

[253]  Ling Li,et al.  Tin–indium/graphene with enhanced initial coulombic efficiency and rate performance for lithium ion batteries , 2014 .

[254]  K. Ryan,et al.  High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. , 2014, Nano letters.

[255]  Yunhui Huang,et al.  Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries. , 2014, Nanoscale.

[256]  Jun Chen,et al.  Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. , 2014, Nano letters.

[257]  M. Obrovac,et al.  (Cu6Sn5)1−xCx active/inactive nanocomposite negative electrodes for Na-ion batteries , 2013 .

[258]  H. Cui,et al.  Growth of the vertically aligned graphene@ amorphous GeOx sandwich nanoflakes and excellent Li storage properties , 2013 .

[259]  Zhiyu Wang,et al.  Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing , 2013, Nature Communications.

[260]  Bin Liu,et al.  Single-crystalline metal germanate nanowire-carbon textiles as binder-free, self-supported anodes for high-performance lithium storage. , 2013, Nanoscale.

[261]  Yabo Wang,et al.  Formation of Sn@C Yolk–Shell Nanospheres and Core–Sheath Nanowires for Highly Reversible Lithium Storage , 2013 .

[262]  Oliver G. Schmidt,et al.  Strain‐Driven Formation of Multilayer Graphene/GeO2 Tubular Nanostructures as High‐Capacity and Very Long‐Life Anodes for Lithium‐Ion Batteries , 2013 .

[263]  Nicholas C. Davy,et al.  A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life , 2013 .

[264]  Adam Heller,et al.  Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material , 2013 .

[265]  Ling Huang,et al.  Nanoscale tin-based intermetallic electrodes encapsulated in microporous copper substrate as the negative electrode with a high rate capacity and a long cycleability for lithium-ion batteries , 2013 .

[266]  Yu‐Guo Guo,et al.  Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries. , 2013, Chemistry, an Asian journal.

[267]  Gabriel M. Veith,et al.  Germanium as negative electrode material for sodium-ion batteries , 2013 .

[268]  Lin Guo,et al.  One‐Step In Situ Synthesis of GeO2/Graphene Composites Anode for High‐Performance Li‐Ion Batteries , 2013 .

[269]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[270]  Jing Ju,et al.  In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties , 2013 .

[271]  Xiaogang Han,et al.  Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. , 2013, ACS nano.

[272]  Shuru Chen,et al.  Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries , 2013 .

[273]  Bin Liu,et al.  Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes. , 2013, Chemistry.

[274]  Gabriel M. Veith,et al.  Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory , 2013 .

[275]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[276]  Zaiping Guo,et al.  Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties , 2013 .

[277]  X. Lou,et al.  SnO₂-based nanomaterials: synthesis and application in lithium-ion batteries. , 2013, Small.

[278]  P. Shen,et al.  Simultaneous Formation of Ultrahigh Surface Area and Three‐Dimensional Hierarchical Porous Graphene‐Like Networks for Fast and Highly Stable Supercapacitors , 2013, Advanced materials.

[279]  Yunhui Huang,et al.  Microwave-Induced in situ synthesis of Zn2GeO4/N-doped graphene nanocomposites and their lithium-storage properties. , 2013, Chemistry.

[280]  Jiajun Li,et al.  Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. , 2013, ACS nano.

[281]  Y. Cho,et al.  Germanium sulfide(II and IV) nanoparticles for enhanced performance of lithium ion batteries. , 2013, Chemical communications.

[282]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[283]  Yadong Yin,et al.  Hollow Nanocrystals through the Nanoscale Kirkendall Effect , 2013 .

[284]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[285]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[286]  Lei Gou,et al.  Electrochemical synthesis and lithium storage performance of Sn–Cu alloy on three-dimensional porous Cu substrate , 2013 .

[287]  Hugh Geaney,et al.  Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling , 2013 .

[288]  B. Chowdari,et al.  Metal oxides and oxysalts as anode materials for Li ion batteries. , 2013, Chemical reviews.

[289]  F. Wang,et al.  Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries , 2013, Scientific Reports.

[290]  Marc D. Walter,et al.  Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. , 2013, Journal of the American Chemical Society.

[291]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[292]  Gengfeng Zheng,et al.  Zn4Sb3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability , 2013 .

[293]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[294]  Jaephil Cho,et al.  Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries. , 2013, Nano letters.

[295]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[296]  R. Li,et al.  Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries , 2013 .

[297]  Christopher M Wolverton,et al.  High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .

[298]  W. Xi,et al.  Highly Conductive and Strain‐Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithium‐Ion‐Storage Capability , 2013, Advanced materials.

[299]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[300]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[301]  Minhua Cao,et al.  Hierarchically porous germanium-modified carbon materials with enhanced lithium storage performance. , 2012, Nanoscale.

[302]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[303]  P. Chu,et al.  New easy way preparation of core/shell structured SnO2@carbon spheres and application for lithium-ion batteries , 2012 .

[304]  Hsing-Yu Tuan,et al.  Alkanethiol-passivated ge nanowires as high-performance anode materials for lithium-ion batteries: the role of chemical surface functionalization. , 2012, ACS nano.

[305]  Shuyan Song,et al.  Co2GeO4 nanoplates and nano-octahedrons from low-temperature controlled synthesis and their magnetic properties , 2012 .

[306]  Po-Chin Chen,et al.  One-step vapor–solid reaction growth of Sn@C core–shell nanowires as an anode material for Li-ion batteries , 2012 .

[307]  Young-Min Choi,et al.  A Ge inverse opal with porous walls as an anode for lithium ion batteries , 2012 .

[308]  B. Korgel,et al.  Solution-grown germanium nanowire anodes for lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[309]  S. Maldonado,et al.  Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid-liquid-solid process in water at ambient pressure and temperature for energy storage. , 2012, Nano letters.

[310]  Xingcheng Xiao,et al.  Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide composite electrodes for Li-ion battery , 2012 .

[311]  Ronggui Yang,et al.  Stable high areal capacity lithium-ion battery anodes based on three-dimensional Ni–Sn nanowire networks , 2012 .

[312]  Xianglong Li,et al.  Graphene‐Confined Sn Nanosheets with Enhanced Lithium Storage Capability , 2012, Advanced materials.

[313]  R. Hu,et al.  Progress on Sn-based thin-film anode materials for lithium-ion batteries , 2012 .

[314]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[315]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[316]  Ya‐Xia Yin,et al.  Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material , 2012 .

[317]  Jianzhong Jiang,et al.  Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities. , 2012, Nanoscale.

[318]  Ling Huang,et al.  A dicranopteris-like Fe-Sn-Sb-P alloy as a promising anode for lithium ion batteries. , 2012, Chemical communications.

[319]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[320]  X. Lou,et al.  One-step synthesis of SnO2 and TiO2 hollow nanostructures with various shapes and their enhanced lithium storage properties. , 2012, Chemistry.

[321]  X. Lou,et al.  Synthesis of micro-sized SnO2@carbon hollow spheres with enhanced lithium storage properties. , 2012, Nanoscale.

[322]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[323]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[324]  Jing Ning,et al.  Reduced Graphene Oxide‐Mediated Growth of Uniform Tin‐Core/Carbon‐Sheath Coaxial Nanocables with Enhanced Lithium Ion Storage Properties , 2012, Advanced materials.

[325]  Jun Liu,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[326]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[327]  H. Hng,et al.  Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries , 2012 .

[328]  Li Lu,et al.  Influence of grain size on lithium storage performance of germanium oxide films , 2012 .

[329]  Xifei Li,et al.  Three‐Dimensional Porous Core‐Shell Sn@Carbon Composite Anodes for High‐Performance Lithium‐Ion Battery Applications , 2012 .

[330]  Yu‐Guo Guo,et al.  Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks. , 2012, Journal of the American Chemical Society.

[331]  Hong-Yan Chen,et al.  Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells , 2012 .

[332]  Xu Li,et al.  Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. , 2012, Nanoscale.

[333]  Hsin Lin,et al.  Topological crystalline insulators in the SnTe material class , 2012, Nature Communications.

[334]  J. Goodenough,et al.  Nickel foam supported SnCo alloy film as anode for lithium ion batteries , 2011 .

[335]  Xiqian Yu,et al.  Amorphous hierarchical porous GeO(x) as high-capacity anodes for Li ion batteries with very long cycling life. , 2011, Journal of the American Chemical Society.

[336]  Qian Sun,et al.  High capacity Sb2O4 thin film electrodes for rechargeable sodium battery , 2011 .

[337]  Wei Wang,et al.  Enhancing Ni–Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces , 2011 .

[338]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[339]  Z. Du,et al.  Nanocone-arrays supported tin-based anode materials for lithium-ion battery , 2011 .

[340]  Z. Du,et al.  Enhanced Electrochemical Performance of Sn–Co Nanoarchitectured Electrode for Lithium Ion Batteries , 2011 .

[341]  J. Xue,et al.  Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications , 2011 .

[342]  Yong Wang,et al.  Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. , 2011, ACS nano.

[343]  Lili Xing,et al.  SnO2/WO3 core–shell nanorods and their high reversible capacity as lithium-ion battery anodes , 2011, Nanotechnology.

[344]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[345]  Jaephil Cho,et al.  Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. , 2011, Angewandte Chemie.

[346]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[347]  S. T. Picraux,et al.  Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. , 2011, Nano letters.

[348]  Dong‐Wan Kim,et al.  Sn-induced low-temperature growth of Ge nanowire electrodes with a large lithium storage capacity. , 2011, Nanoscale.

[349]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[350]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[351]  L. Archer,et al.  SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries , 2011 .

[352]  Christopher A. Bonino,et al.  Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. , 2011, ACS applied materials & interfaces.

[353]  Wan-Jin Lee,et al.  Preparation and Characterization of Ni-Sn/Carbon Nanofibers Composite Anode for Lithium Ion Battery , 2011 .

[354]  Ling Huang,et al.  Lithium storage performance and interfacial processes of three dimensional porous Sn-Co alloy electrodes for lithium-ion batteries , 2011 .

[355]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[356]  N. Kumagai,et al.  Preparation of Co–Sn alloy film as negative electrode for lithium secondary batteries by pulse electrodeposition method , 2011 .

[357]  Jungil Park,et al.  Formation and behavior of Kirkendall voids within intermetallic layers of solder joints , 2011 .

[358]  Deren Yang,et al.  Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties. , 2011, Nanoscale.

[359]  Wang-jun Cui,et al.  A modified carbothermal reduction method for preparation of high-performance nano-scale core/shell C , 2011 .

[360]  X. Lou,et al.  Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. , 2011, Journal of the American Chemical Society.

[361]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[362]  Li Lu,et al.  Zn2GeO4 Nanorods synthesized by low-temperature hydrothermal growth for high-capacity anode of lithium battery , 2011 .

[363]  C. Julien,et al.  Study of Co-Sn and Ni-Sn alloys prepared in molten chlorides and used as negative electrode in rechargeable lithium battery , 2011 .

[364]  Jaephil Cho,et al.  High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries , 2011 .

[365]  Cheol‐Min Park,et al.  Porous structured SnSb/C nanocomposites for Li-ion battery anodes. , 2011, Chemical communications.

[366]  Mohammad M. Shahjamali,et al.  Template-Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li-Ion Battery Anodes , 2011 .

[367]  Ling Huang,et al.  XPS and ToF-SIMS study of Sn–Co alloy thin films as anode for lithium ion battery , 2010 .

[368]  Zhen Wei,et al.  Sn–Co–artificial graphite composite as anode material for rechargeable lithium batteries , 2010 .

[369]  Ruoxu Lin,et al.  Nickel Nanocone‐Array Supported Silicon Anode for High‐Performance Lithium‐Ion Batteries , 2010, Advanced materials.

[370]  Min Gyu Kim,et al.  Novel Core‐Shell Sn‐Cu Anodes for Lithium Rechargeable Batteries Prepared by a Redox‐Transmetalation Reaction , 2010, Advanced materials.

[371]  M. Whittingham,et al.  Electrochemical Behavior of the Amorphous Tin–Cobalt Anode , 2010 .

[372]  H. Munakata,et al.  Highly patterned cylindrical Ni–Sn alloys with 3-dimensionally ordered macroporous structure as anodes for lithium batteries , 2010 .

[373]  Yu‐Guo Guo,et al.  Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries , 2010 .

[374]  Ling Huang,et al.  In situ microscope FTIR spectroscopic studies of interfacial reactions of Sn-Co alloy film anode of lithium ion battery , 2010 .

[375]  Zhan Lin,et al.  Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage. , 2010, Chemistry.

[376]  Minghong Wu,et al.  Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries , 2010 .

[377]  Leigang Xue,et al.  Three-dimensional porous Sn–Cu alloy anode for lithium-ion batteries , 2010 .

[378]  Ling Huang,et al.  Fabrication and electrochemical properties of the Sn-Ni-P alloy rods array electrode for lithium-ion batteries , 2010 .

[379]  X. Lou,et al.  Controlled synthesis of Sb nanostructures and their conversion to CoSb3 nanoparticle chains for li-ion battery electrodes , 2010 .

[380]  Jiangfeng Qian,et al.  Antimony-Coated SiC Nanoparticles as Stable and High-Capacity Anode Materials for Li-Ion Batteries , 2010 .

[381]  Mariah D. Woodroof,et al.  Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries , 2010 .

[382]  Jie Liu,et al.  Size-Controlled Synthesis of ZnSnO3 Cubic Crystallites at Low Temperatures and Their HCHO-Sensing Properties , 2010 .

[383]  Jae-Hun Kim,et al.  Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.

[384]  Jin Huang,et al.  An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. , 2010, Biosensors & bioelectronics.

[385]  Yu‐Guo Guo,et al.  Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries , 2010 .

[386]  T. Fuyuki,et al.  Electrical properties of p-type and n-type doped inverse silicon opals - towards optically amplified silicon solar cells , 2010 .

[387]  J. Tirado,et al.  PAN-Encapsulated Nanocrystalline CoSn2 Particles as Negative Electrode Active Material for Lithium-Ion Batteries , 2010 .

[388]  W. Han,et al.  Single-crystal intermetallic M-Sn (M = Fe, Cu, Co, Ni) nanospheres as negative electrodes for lithium-ion batteries. , 2010, ACS applied materials & interfaces.

[389]  Peng Zhang,et al.  Polycrystalline SnO2 nanowires coated with amorphous carbon nanotube as anode material for lithium ion batteries , 2010 .

[390]  Haihui Wang,et al.  Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries , 2010 .

[391]  Jaephil Cho,et al.  Stacked porous tin phosphate nanodisk anodes. , 2010, Chemical communications.

[392]  Haoshen Zhou,et al.  Synthesis and applications of SnO nanosheets: parallel control of oxidation state and nanostructure through an aqueous solution route. , 2010, Small.

[393]  Yuping Wu,et al.  Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction , 2010 .

[394]  H. Groult,et al.  Preparation of Co–Sn alloys by electroreduction of Co(II) and Sn(II) in molten LiCl–KCl , 2010 .

[395]  G. F. Ortiz,et al.  Nanoarchitectured TiO2/SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries? , 2010 .

[396]  Cheol‐Min Park,et al.  Stibnite (Sb2S3) and its amorphous composite as dual electrodes for rechargeable lithium batteries , 2010 .

[397]  Jaephil Cho,et al.  Flexible Dimensional Control of High‐Capacity Li‐Ion‐Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies , 2010, Advanced materials.

[398]  Huijuan Zhang,et al.  Morphology-controlled synthesis of SnO(2) nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. , 2010, Small.

[399]  Pooi See Lee,et al.  Crystallographic Alignment of ZnO Nanorod Arrays on Zn2GeO4 Nanocrystals: Promising Lattice-Matched Substrates , 2010 .

[400]  Cheol‐Min Park,et al.  Quasi‐Intercalation and Facile Amorphization in Layered ZnSb for Li‐Ion Batteries , 2010, Advanced materials.

[401]  Huafeng Yang,et al.  One-step synthesis of graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors , 2009, Nanotechnology.

[402]  Dong‐Wan Kim,et al.  Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries , 2009, Nanotechnology.

[403]  Bei Wang,et al.  Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries , 2009 .

[404]  Li Yang,et al.  Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries , 2009 .

[405]  Bin Luo,et al.  Application of graphene and graphene‐based materials in clean energy‐related devices , 2009 .

[406]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[407]  Xiangming He,et al.  Performance of Sn-Cu Alloy Anode at Low Temperature , 2009 .

[408]  Yongyao Xia,et al.  Core–shell carbon-coated Cu6Sn5 prepared by in situpolymerization as a high-performance anode material for lithium-ion batteries , 2009 .

[409]  R. Hu,et al.  Influences of Composition on the Electrochemical Performance in Immiscible Sn-Al Thin Films as Anodes for Lithium Ion Batteries , 2009 .

[410]  Bei Wang,et al.  In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries , 2009 .

[411]  Xiaohua Ma,et al.  Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications , 2009 .

[412]  Ling Huang,et al.  Fabrication and electrochemical properties of novel ternary Sb–Co–P alloy electrodes for lithium-ion batteries , 2009 .

[413]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[414]  A. Manthiram,et al.  Sb-MOx-C (M = Al, Ti, or Mo) Nanocomposite Anodes for Lithium-Ion Batteries , 2009 .

[415]  Andrew J. Medford,et al.  Porous carbon nanofibers loaded with manganese oxide particles: Formation mechanism and electrochemical performance as energy-storage materials , 2009 .

[416]  Pooi See Lee,et al.  Synthesis and structure characterization of ternary Zn2GeO4 nanowires by chemical vapor transport , 2009 .

[417]  B. Scrosati,et al.  A SnSb–C nanocomposite as high performance electrode for lithium ion batteries , 2009 .

[418]  H. Morito,et al.  Na–Si binary phase diagram and solution growth of silicon crystals , 2009 .

[419]  Irina V. Belova,et al.  Formation of a Hollow Binary Alloy Nanosphere: A Kinetic Monte Carlo Study , 2009 .

[420]  Lynden A. Archer,et al.  Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage , 2009 .

[421]  Yong Wang,et al.  Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage , 2009 .

[422]  Chen Feng,et al.  Cross‐Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO2 Nanoparticles: A Novel Binder‐Free and High‐Capacity Anode Material for Lithium‐Ion Batteries , 2009 .

[423]  Qi Li,et al.  Carbon-coated copper–tin alloy anode material for lithium ion batteries , 2009 .

[424]  Min Gyu Kim,et al.  Reversible and High‐Capacity Nanostructured Electrode Materials for Li‐Ion Batteries , 2009 .

[425]  Zaiping Guo,et al.  Ultra-fine porous SnO2 nanopowder prepared via a molten salt process: a highly efficient anode material for lithium-ion batteries , 2009 .

[426]  M. Thackeray,et al.  High-Capacity, Microporous Cu6Sn5 – Sn Anodes for Li-Ion Batteries , 2009 .

[427]  Ling Huang,et al.  Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries , 2009 .

[428]  Ling Huang,et al.  Electrodeposition and lithium storage performance of three-dimensional porous reticular Sn-Ni alloy electrodes , 2009 .

[429]  Jian Jiang,et al.  Direct growth of SnO2nanorod array electrodes for lithium-ion batteries , 2009 .

[430]  R. Hu,et al.  Microstructure and electrochemical performance of thin film anodes for lithium ion batteries in immiscible Al–Sn system , 2009 .

[431]  Ling Huang,et al.  Electrodeposition and lithium storage performance of novel three-dimensional porous Fe-Sb-P amorphous alloy electrode , 2009 .

[432]  Phl Peter Notten,et al.  Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study , 2009 .

[433]  R. Spontak,et al.  Bi-directional Kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. , 2009, ACS nano.

[434]  Ling Huang,et al.  One-step electrodeposition synthesis and electrochemical properties of Cu6Sn5 alloy anodes for lithium-ion batteries , 2009 .

[435]  G. Sumanasekera,et al.  Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. , 2009, Nano letters.

[436]  Xiangyang Ma,et al.  Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery , 2009 .

[437]  Qiang Ru,et al.  Investigation on Lithiation Mechanism of Interphase Ni3Sn4 Alloy Used as Anode Material for Lithium-Ion Batteries , 2009 .

[438]  Dongmin Im,et al.  Reaction mechanism and electrochemical characterization of a Sn–Co–C composite anode for Li-ion batteries , 2008 .

[439]  Huakun Liu,et al.  Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems , 2008 .

[440]  D. Xia,et al.  One-Pot Synthesis of Carbon Nanotube@SnO2−Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability , 2008 .

[441]  Bruno Scrosati,et al.  A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance , 2008 .

[442]  B. Scrosati,et al.  The role of the morphology in the response of Sb-C nanocomposite electrodes in lithium cells , 2008 .

[443]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[444]  J. Mosby,et al.  Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. , 2008, Journal of the American Chemical Society.

[445]  R. Hu,et al.  Investigation of immiscible alloy system of Al–Sn thin films as anodes for lithium ion batteries , 2008 .

[446]  Z. Fu,et al.  Pulsed laser deposited Sb2Se3 anode for lithium-ion batteries , 2008 .

[447]  Chih-Chieh Wang,et al.  Water-Driven Formation of Luminescent Zn2GeO4 Nanorods from Zn-Containing Ge Nanoparticles , 2008 .

[448]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[449]  Steve W. Martin,et al.  Electrochemical behavior of Ge and GeX2 (X = O, S) glasses: Improved reversibility of the reaction of Li with Ge in a sulfide medium , 2008 .

[450]  U. Lafont,et al.  SnSb micron-sized particles for Li-ion batteries , 2008 .

[451]  Yi Tang,et al.  Synthesis and Characterization of Organic–Inorganic Hybrid GeOx/Ethylenediamine Nanowires , 2008 .

[452]  Cheol‐Min Park,et al.  Novel Antimony/Aluminum/Carbon Nanocomposite for High-Performance Rechargeable Lithium Batteries , 2008 .

[453]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[454]  R. Hu,et al.  Microstructure and electrochemical properties of electron-beam deposited Sn-Cu thin film anodes for thin film lithium ion batteries , 2008 .

[455]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[456]  Jaephil Cho,et al.  Template Synthesis of Hollow Sb Nanoparticles as a High-Performance Lithium Battery Anode Material , 2008 .

[457]  D. Deng,et al.  Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage , 2008 .

[458]  Jaephil Cho,et al.  Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials , 2008 .

[459]  K. Edström,et al.  Electrodeposition and electrochemical characterisation of thick and thin coatings of Sb and Sb/Sb2O3 particles for Li-ion battery anodes , 2007 .

[460]  N. S. Tabrizi,et al.  Sb/O nano-composites produced via Spark Discharge Generation for Li-ion battery anodes , 2007 .

[461]  Hailei Zhao,et al.  Studies of the electrochemical performance of Sn–Sb alloy prepared by solid-state reduction , 2007 .

[462]  Rudolf Holze,et al.  Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery , 2007 .

[463]  Xiaohe Liu,et al.  Synthesis and electrochemical performances of amorphous carbon-coated Sn-Sb particles as anode material for lithium-ion batteries , 2007 .

[464]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[465]  Qiang Wang,et al.  In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous‐Tube Structure as Anode for Lithium Batteries , 2007 .

[466]  Kristina Edström,et al.  Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries , 2007 .

[467]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[468]  A. Alivisatos,et al.  SnTe nanocrystals: a new example of narrow-gap semiconductor quantum dots. , 2007, Journal of the American Chemical Society.

[469]  L. Wan,et al.  In-Situ Loading of Noble Metal Nanoparticles on Hydroxyl-Group-Rich Titania Precursor and Their Catalytic Applications , 2007 .

[470]  Ling Huang,et al.  Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries , 2007 .

[471]  Ling Huang,et al.  Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries , 2007 .

[472]  Robert Furstenberg,et al.  Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals , 2007 .

[473]  R. Li,et al.  Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes , 2007 .

[474]  Yong‐Mook Kang,et al.  Nanostructured SnSb/Carbon Nanotube Composites Synthesized by Reductive Precipitation for Lithium-Ion Batteries , 2007 .

[475]  K. Edström,et al.  Electrodeposited Sb and Sb/Sb2O3 Nanoparticle Coatings as Anode Materials for Li-Ion Batteries , 2007 .

[476]  Li Wang,et al.  Nanometer copper–tin alloy anode material for lithium-ion batteries , 2007 .

[477]  Jaephil Cho,et al.  Sn0.9Si0.1/Carbon Core—Shell Nanoparticles for High-Density Lithium Storage Materials , 2007 .

[478]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[479]  N. Kalaiselvi,et al.  Synthesis and electrochemical evaluation of carbon coated Cu6Sn5 alloy-graphite composite lithium battery anodes , 2007 .

[480]  S. Matsuta,et al.  Study on Sn-Co alloy Electrodes for Lithium Secondary Batteries II. Nanocomposite System , 2006 .

[481]  B. Scrosati,et al.  Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries , 2006 .

[482]  Jiaguo Yu,et al.  Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self‐Transformation , 2006 .

[483]  C. Pérez-Vicente,et al.  On the Mechanism of the Electrochemical Reaction of Tin Phosphide with Lithium , 2006 .

[484]  Xiangming He,et al.  Preparation of Cu6Sn5-Encapsulated Carbon Microsphere Anode Materials for Li-ion Batteries by Carbothermal Reduction of Oxides , 2006 .

[485]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[486]  S. Matsuta,et al.  Study on Sn–Co Alloy Anodes for Lithium Secondary Batteries I. Amorphous System , 2006 .

[487]  Zheng-Wen Fu,et al.  Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide , 2006 .

[488]  Ren Jianguo,et al.  Preparation and Property of Nanometer Cu--Sn Alloy Anode Material for Lithium--Ion Batteries , 2006 .

[489]  Yu‐Guo Guo,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[490]  T. Tunkasiri,et al.  Solution route synthesis of dendrite Cu6Sn5 powders, anode material for lithium-ion batteries , 2006 .

[491]  J. Tu,et al.  Mechanochemical synthesis and electrochemical properties of nanosized SnS as an anode material for lithium ion batteries , 2006 .

[492]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[493]  H. Zeng Synthetic architecture of interior space for inorganic nanostructures , 2006 .

[494]  J. Tarascon,et al.  Characterization and Li Reactivity of Electrodeposited Copper-Tin Nanoalloys Prepared under Spontaneous Current Oscillations , 2005 .

[495]  Y. J. Chen,et al.  Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods , 2005 .

[496]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[497]  Hui Cao,et al.  Characterization of SnO2 nanowires as an anode material for Li-ion batteries , 2005 .

[498]  L. Balan,et al.  Novel tin–graphite composites as negative electrodes of Li-ion batteries , 2005 .

[499]  Á. Caballero,et al.  Tin Nanoparticles Formed in the Presence of Cellulose Fibers Exhibit Excellent Electrochemical Performance as Anode Materials in Lithium-Ion Batteries , 2005 .

[500]  D. Aurbach,et al.  Nanoparticles of tin confined in microporous carbon matrices as anode materials for Li batteries , 2005 .

[501]  T. Osaka,et al.  Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling , 2005 .

[502]  Xiangming He,et al.  Electrodeposition of Sn–Cu alloy anodes for lithium batteries , 2005 .

[503]  T. Sakai,et al.  Nanostructured Ag–Fe–Sn/Carbon Nanotubes Composites as Anode Materials for Advanced Lithium‐Ion Batteries , 2005 .

[504]  Seung M. Oh,et al.  Sn-Carbon Core-Shell Powder for Anode in Lithium Secondary Batteries , 2005 .

[505]  V. Varadan,et al.  Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials , 2005 .

[506]  J. Lee,et al.  Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications , 2005 .

[507]  Xinqun Cheng,et al.  Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery , 2005 .

[508]  Meilin Liu,et al.  Three‐Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries , 2005 .

[509]  Min Gyu Kim,et al.  Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery , 2005 .

[510]  T. Osaka,et al.  Structural and morphological modifications of a nanosized 62 atom percent Sn-Ni thin film anode during reaction with lithium , 2005 .

[511]  D. Aurbach,et al.  The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. , 2005, Chemical communications.

[512]  M. Mastragostino,et al.  Lithiation/Delithiation Performance of Cu6Sn5 with Carbon Paper as Current Collector , 2005 .

[513]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[514]  Liping Zhao,et al.  Filling of multi-walled carbon nanotubes with tin(IV) oxide , 2004 .

[515]  Heon-Cheol Shin,et al.  Copper Foam Structures with Highly Porous Nanostructured Walls , 2004 .

[516]  H. Yang,et al.  Self-construction of hollow SnO(2) octahedra based on two-dimensional aggregation of nanocrystallites. , 2004, Angewandte Chemie.

[517]  G. Cao,et al.  Electrochemical Performances of Nanosized Intermetallic Compound CoSb2 Prepared by the Solvothermal Route , 2004 .

[518]  J. Lee,et al.  Tin Nanoparticle Loaded Graphite Anodes for Li-Ion Battery Applications , 2004 .

[519]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[520]  R. Schlögl,et al.  Wet-chemical assembly of carbon tube-in-tube nanostructures. , 2004, Small.

[521]  G. Cao,et al.  Preparation and properties of antimony thin film anode materials , 2004 .

[522]  Y. Bando,et al.  Unusual freezing and melting of gallium encapsulated in carbon nanotubes. , 2004, Physical review letters.

[523]  H. Dai,et al.  Surface chemistry and electrical properties of germanium nanowires. , 2004, Journal of the American Chemical Society.

[524]  Young-Ugk Kim,et al.  Reaction Mechanism of Tin Phosphide Anode by Mechanochemical Method for Lithium Secondary Batteries , 2004 .

[525]  T. Sakai,et al.  Electrode Properties and Lithiation/Delithiation Reactions of Ag-Sb-Sn Nanocomposite Anodes in Li-Ion Batteries , 2004 .

[526]  Noriyuki Tamura,et al.  Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries , 2004 .

[527]  C. C. Ahn,et al.  Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities , 2004 .

[528]  T. Sakai,et al.  Nanocrystalline Ag-Fe-Sn Anode Materials for Li-Ion Batteries , 2004 .

[529]  C. Dustmann Advances in ZEBRA batteries , 2004 .

[530]  P. Kumta,et al.  Sn/C composite anodes for Li-ion batteries , 2004 .

[531]  J. Dahn,et al.  Electrochemical and in situ XRD studies of the Li reaction with combinatorially sputtered Mo1-xSnx (0 <= x <= 0.50) thin films , 2004 .

[532]  哲男 境,et al.  次世代Li電池用Ag-Sb-Sn合金負極の特性とそのLi吸蔵・放出過程における構造変化 , 2004 .

[533]  Meilin Liu,et al.  Well‐Aligned “Nano‐Box‐Beams” of SnO2 , 2004 .

[534]  M. Zheng,et al.  Preparation and performance of nickel–tin alloys used as anodes for lithium-ion battery , 2004 .

[535]  S. Dou,et al.  Electrochemical properties of nanosize Sn-coated graphite anodes in lithium-ion cells , 2004 .

[536]  J. Tarascon,et al.  Electrochemical study of nanometer Co3O4, Co, CoSb3 and Sb thin films toward lithium , 2004 .

[537]  L. Kavan,et al.  Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth , 2004 .

[538]  D. Billaud,et al.  Electrochemical intercalation of lithium into graphite–antimony composites synthesized by reduction of a SbCl5–graphite intercalation compound by gaseous caesium , 2004 .

[539]  J. M. Kim,et al.  Efficient Field Emission from Highly Aligned, Graphitic Nanotubes Embedded with Gold Nanoparticles , 2003 .

[540]  Meilin Liu,et al.  Nanoporous Structures Prepared by an Electrochemical Deposition Process , 2003 .

[541]  T. Sakai,et al.  Electroplated Sn-Zn Alloy Electrode for Li Secondary Batteries , 2003 .

[542]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[543]  G. P. Nikishkov,et al.  Curvature estimation for multilayer hinged structures with initial strains , 2003 .

[544]  H. Sakaguchi,et al.  Anode behaviors of magnesium–antimony intermetallic compound for lithium secondary battery , 2003 .

[545]  S. Yoshida,et al.  New Ag-Sn Alloy Anode Materials for Lithium-Ion Batteries , 2003 .

[546]  Kathryn A. Striebel,et al.  Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries , 2003 .

[547]  M. Balasubramanian,et al.  The Electrochemistry of Germanium Nitride with Lithium , 2003 .

[548]  L. Nazar,et al.  Reversible Lithium Uptake by FeP2 , 2003 .

[549]  K. Edström,et al.  Alternative anode materials for lithium-ion batteries: a study of Ag3Sb , 2003 .

[550]  Noriyuki Tamura,et al.  Advanced structures in electrodeposited Tin base negative electrodes for lithium secondary batteries , 2003 .

[551]  J. Yang,et al.  Morphology-stable alloy/C composites for lithium insertion , 2003 .

[552]  Y. Yoon,et al.  Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries , 2003 .

[553]  Maomao Chen,et al.  Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries , 2003 .

[554]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[555]  Yong Wang,et al.  Preparation of SnO2–graphite nanocomposite anodes by urea-mediated hydrolysis , 2003 .

[556]  D. K. Yi,et al.  Novel Approach to the Fabrication of Macroporous Polymers and Their Use as a Template for Crystalline Titania Nanorings , 2003 .

[557]  Zuhong Lu,et al.  A novel nanostructure of nickel nanotubes encapsulated in carbon nanotubes. , 2003, Chemical communications.

[558]  J. Lee,et al.  Pechini process-derived tin oxide and tin oxide-graphite composites for lithium-ion batteries , 2002 .

[559]  H. Lee,et al.  Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying , 2002 .

[560]  Zheng Xu,et al.  A Facile Method for Creating an Array of Metal‐Filled Carbon Nanotubes , 2002 .

[561]  L. Monconduit,et al.  Electrochemical reaction of lithium with CoP3 , 2002 .

[562]  W. Behl,et al.  Nano-scale Cu6Sn5 anodes , 2002 .

[563]  L. Nazar,et al.  A Reversible Solid-State Crystalline Transformation in a Metal Phosphide Induced by Redox Chemistry , 2002, Science.

[564]  B. Popov,et al.  Study of Sn-Coated Graphite as Anode Material for Secondary Lithium-Ion Batteries , 2002 .

[565]  J. Yang,et al.  Advanced Sn/C composite anodes for lithium ion batteries , 2002 .

[566]  D. K. Yi,et al.  Fabrication of a mesoscale wire: Sintering of a polymer colloid arrayed inside a one-dimensional groove pattern , 2002 .

[567]  Y. Rosenberg,et al.  Tin Alloy-Graphite Composite Anode for Lithium-Ion Batteries , 2002 .

[568]  J. Yamaki,et al.  Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries , 2002 .

[569]  Noriyuki Tamura,et al.  Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes , 2002 .

[570]  Lide Zhang,et al.  Hollow Sphere Selenium Nanoparticles: Their In‐Vitro Anti Hydroxyl Radical Effect , 2002 .

[571]  L. Qi,et al.  Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double‐Hydrophilic Block Copolymers , 2002 .

[572]  Hansu Kim,et al.  Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries , 2002 .

[573]  Hansu Kim,et al.  Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries , 2001 .

[574]  A. Blaaderen,et al.  Synthesis and Characterization of Monodisperse Core−Shell Colloidal Spheres of Zinc Sulfide and Silica , 2001 .

[575]  J. Besenhard,et al.  Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries , 2001 .

[576]  B. Puresheva,et al.  Electrochemical lithium intercalation in lead-tin-aluminium solder , 2001 .

[577]  B. Chowdari,et al.  Sn-Ca amorphous alloy as anode for lithium ion battery , 2001 .

[578]  Toshiyuki Momma,et al.  SnS2 anode for rechargeable lithium battery , 2001 .

[579]  D. H. Bradhurst,et al.  Graphite–Tin composites as anode materials for lithium-ion batteries , 2001 .

[580]  Bruno Scrosati,et al.  Nanomaterial-based Li-ion battery electrodes , 2001 .

[581]  Otto Zhou,et al.  Alloy Formation in Nanostructured Silicon , 2001 .

[582]  Yongyao Xia,et al.  Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries , 2001 .

[583]  C. Pérez-Vicente,et al.  Electrochemical reactions of polycrystalline CrSb2 in lithium batteries , 2001 .

[584]  O. Schmidt,et al.  Nanotechnology: Thin solid films roll up into nanotubes , 2001, Nature.

[585]  G. Cao,et al.  Study on the insertion behaviors of Lithium-ions into CoFe3Sb12 based electrodes , 2001 .

[586]  Yongyao Xia,et al.  A 4 V Lithium-Ion Battery Based on a 5 V LiNi x Mn2 − x O 4 Cathode and a Flake Cu-Sn Microcomposite Anode , 2001 .

[587]  C. R. Martin,et al.  A High-Rate, High-Capacity, Nanostructured Sn-Based Anode Prepared Using Sol-Gel Template Synthesis , 2001 .

[588]  J. Yang,et al.  Lithium insertion into Sn- and SnSbx-based composite electrodes in solid polymer electrolytes , 2000 .

[589]  J. Yang,et al.  Intermetallic SnSbx compounds for lithium insertion hosts , 2000 .

[590]  Zhaolin Liu,et al.  Amorphous Sn2P2O7, Sn2B2O5 and Sn2BPO6 anodes for lithium ion batteries , 2000 .

[591]  Christopher S. Johnson,et al.  Electrochemistry and in-situ x-ray diffraction of InSb in lithium batteries. , 2000 .

[592]  G. Cao,et al.  Electrochemical properties of Zn4Sb3 as anode materials for lithium-ion batteries , 2000 .

[593]  J. Dahn,et al.  Study of the Reaction of Lithium with Isostructural A 2 B and Various Al x B Alloys , 2000 .

[594]  D. H. Bradhurst,et al.  Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling , 2000 .

[595]  Zhaolin Liu,et al.  Electrochemical Performance of Amorphous and Crystalline Sn2 P 2 O 7 Anodes in Secondary Lithium Batteries , 1999 .

[596]  Liquan Chen,et al.  Anodes based on oxide materials for lithium rechargeable batteries 1 1 Paper presented at the 1997 H , 1999 .

[597]  Otto Zhou,et al.  ELECTROCHEMICAL INTERCALATION OF SINGLE-WALLED CARBON NANOTUBES WITH LITHIUM , 1999 .

[598]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[599]  T. Brousse,et al.  Tin based alloys for lithium ion batteries , 1999 .

[600]  X. B. Zhang,et al.  Structure and Lithium Insertion Properties of Carbon Nanotubes , 1999 .

[601]  J. Besenhard,et al.  SUB-MICROCRYSTALLINE SN AND SN-SNSB POWDERS AS LITHIUM STORAGE MATERIALS FOR LITHIUM-ION BATTERIES , 1999 .

[602]  F. Grønvold,et al.  Effects of trace impurities on metal fixed points: antimony and bismuth in tin , 1999 .

[603]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[604]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[605]  Caruso,et al.  Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating , 1998, Science.

[606]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[607]  M. Takano,et al.  A new anode material SnSO4 for lithium secondary battery , 1998 .

[608]  J. Dahn,et al.  Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2 BPO 6 Glass , 1997 .

[609]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[610]  A. Pelton,et al.  The Ge- Li (Germanium-Lithium) system , 1997 .

[611]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[612]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[613]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[614]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[615]  Jeff Dahn,et al.  Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells , 1990 .

[616]  Y. Takeda,et al.  Carbon as negative electrodes in lithium secondary cells , 1989 .

[617]  Yoshimitsu Tajima,et al.  Rechargeable lithium battery based on pyrolytic carbon as a negative electrode , 1989 .

[618]  R. J. Bones,et al.  Development of a Ni , NiCl2 Positive Electrode for a Liquid Sodium (ZEBRA) Battery Cell , 1989 .

[619]  M. Fouletier,et al.  Electrochemical intercalation of sodium in graphite , 1988 .

[620]  Robert A. Huggins,et al.  Kinetic and Thermodynamic Parameters of Several Binary Lithium Alloy Negative Electrode Materials at Ambient Temperature , 1987 .

[621]  B. Predel,et al.  Calorimetric and emf studies on liquid Li-Sn alloys , 1986 .

[622]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[623]  A. Dey Comment on “Electrochemical Intercalation of Lithium in an Active Carbon” [J. Electrochem. Soc., 131, 959] , 1985 .

[624]  R. Baughman,et al.  Polyacetylene and Polyphenylene as Anode Materials for Nonaqueous Secondary Batteries , 1985 .

[625]  N. A. Hampson,et al.  A review of cells based on lithium negative electrodes (anodes) , 1984 .

[626]  Y. Matsuda,et al.  Electrochemical Intercalation of Lithium into an Active Carbon , 1984 .

[627]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[628]  C. Vincent,et al.  Electrochemical doping of carbon fibre , 1983 .

[629]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[630]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[631]  W. Geertsma,et al.  THE LI-7 KNIGHT-SHIFT OF LIQUID LI-GE ALLOYS , 1982 .

[632]  A. Sammells,et al.  Thermodynamic Studies of Li‐Ge Alloys: Application to Negative Electrodes for Molten Salt Batteries , 1982 .

[633]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[634]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[635]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[636]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[637]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[638]  R. Huggins,et al.  Thermodynamic Properties of the Intermetallic Systems Lithium‐Antimony and Lithium‐Bismuth , 1978 .

[639]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[640]  H. A. Christopher,et al.  Lithium‐Aluminum Electrode , 1977 .

[641]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[642]  M. Whittingham,et al.  The lithium intercalates of the transition metal dichalcogenides , 1975 .

[643]  A. Dey,et al.  Electrochemical Alloying of Lithium in Organic Electrolytes , 1971 .

[644]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[645]  A. Remanick,et al.  Electrochemical characterization of systems for secondary battery application Second quarterly report, Aug. - Oct. 1966 , 1966 .

[646]  M. Rao,et al.  Evaluation of rechargeable lithium--copper chloride organic electrolyte battery system. Technical report No. 1, March--September 1966. [LiAlCl/sub 4/ in propylene carbonate] , 1966 .

[647]  H. Bauman LIMITED-CYCLE SECONDARY BATTERY USING LITHIUM ANODE , 1964 .

[648]  H. Bauman LITHIUM ANODE LIMITED CYCLE SECONDARY BATTERY , 1963 .

[649]  William Shockley,et al.  p − n Junction Transistors , 1951 .

[650]  William Shockley,et al.  Theory and Experiment for a Germanium p − n Junction , 1951 .

[651]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[652]  G. Tammann,et al.  Metallographische Mitteilungen aus dem Institut für physikalische Chemie der Universität Göttingen. LXXV. Über das Verhalten von Lithium zu Natrium, Kalium, Zinn, Cadmium und Magnesium , 1910 .

[653]  F. Du,et al.  Enhanced electrochemical properties of carbon coated Zn2GeO4 micron-rods as anode materials for sodium-ion batteries , 2018 .

[654]  C. Shi,et al.  Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries , 2018 .

[655]  C. O’Dwyer,et al.  High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage , 2018 .

[656]  Bin Huang,et al.  Carbon encapsulated Sn-Co alloy: A stabilized tin-based material for sodium storage , 2018 .

[657]  V. Presser,et al.  Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries , 2018 .

[658]  Bo Peng,et al.  A High‐Rate and Ultrastable Sodium Ion Anode Based on a Novel Sn4P3‐P@Graphene Nanocomposite , 2018 .

[659]  Peter Müller-Buschbaum,et al.  Silicon based lithium-ion battery anodes: A chronicle perspective review , 2017 .

[660]  Zhian Zhang,et al.  SnSex flowerlike composites as anode materials for sodium ion batteries , 2016 .

[661]  C. Villevieille,et al.  FeSn2 and CoSn2 Electrode Materials for Na-Ion Batteries , 2016 .

[662]  Mingdeng Wei,et al.  In situ synthesis of GeO2/reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries , 2015 .

[663]  Zaiping Guo,et al.  Hollow carbon spheres with encapsulated germanium as an anode material for lithium ion batteries , 2015 .

[664]  B. Geng,et al.  3D hollow framework of GeOx with ultrathin shell for improved anode performance in lithium-ion batteries , 2015 .

[665]  Wei Wei,et al.  Facile one-pot method synthesis CNT–GeO2 nanocomposite for high performance Li ion battery anode material , 2015 .

[666]  L. Ellis,et al.  In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells , 2014 .

[667]  H. Cui,et al.  Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage , 2014 .

[668]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[669]  S. Dou,et al.  Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances , 2014 .

[670]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[671]  Cho-Long Lee,et al.  Highly Reversible Sn-Co Alloy Anode Using Porous Cu Foam Substrate for Li-Ion Batteries , 2012 .

[672]  Yadong Li,et al.  Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in Li-ion batteries , 2012, Nano Research.

[673]  Deren Yang,et al.  Cu–Ge core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries , 2012 .

[674]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[675]  Cheol‐Min Park,et al.  Electrochemical Characteristics of TiSb2 and Sb/TiC/C Nanocomposites as Anodes for Rechargeable Li-Ion Batteries , 2010 .

[676]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[677]  Yi Cui,et al.  High capacity Li ion battery anodes using ge nanowires. , 2008, Nano letters.

[678]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[679]  L. Balan,et al.  Group 15 element–graphite composites synthesized by reduction of chlorides by KC8: Characterization and electrochemical lithiation , 2005 .

[680]  T. Sakai,et al.  Reaction mechanism of a Ag36.4Sb15.6Sn48 nanocomposite electrode for advanced Li-ion batteries , 2005 .

[681]  E. Zhecheva,et al.  Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study , 2004 .

[682]  S. Yoshida,et al.  Preparation of Novel Ag-Fe-Sn Composite Anode Materials for Next Generation Li-Ion Batteries and Their Structural Changes during Charging and Discharging , 2003 .

[683]  J. Lee,et al.  Microemulsion synthesis of tin oxide-graphite nanocomposites as negative electrode materials for lithium-ion batteries , 2003 .

[684]  S. Dou,et al.  Lithium Storage Properties of Ball Milled Ni-57 mass%Sn Alloy , 2002 .

[685]  S. Bonnamy,et al.  Electrochemical storage of lithium in multiwalled carbon nanotubes , 1999 .

[686]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[687]  J. Jumas,et al.  Electrochemical reaction of lithium with the CoSb3 skutterudite , 1999 .

[688]  J. L. Sudworth,et al.  The sodium/sulphur battery , 1984 .

[689]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .