Adaptation and control circuits in bacterial chemotaxis.

Bacteria are capable of sensing and responding to changes in their environment. One of the ways they do this is via chemotaxis, regulating swimming behaviour. The chemotaxis pathway senses chemoattractant gradients and uses a feedback loop to change the bacterial swimming pattern; this feedback loop differs in detail between species. In the present article, we summarize the current understanding of the regulatory mechanisms in three species and how these pathways can be viewed and analysed through the ideas of feedback control systems engineering.

[1]  R. Schmitt,et al.  Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. , 1998, Biochemistry.

[2]  Karen Lipkow,et al.  Changing Cellular Location of CheZ Predicted by Molecular Simulations , 2006, PLoS Comput. Biol..

[3]  Patrick E. McSharry,et al.  A model invalidation-based approach for elucidating biological signalling pathways, applied to the chemotaxis pathway in R. sphaeroides , 2009, BMC Systems Biology.

[4]  J. Armitage,et al.  Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? , 1997, Microbiology.

[5]  Antonis Papachristodoulou,et al.  On validation and invalidation of biological models , 2009, BMC Bioinformatics.

[6]  Hendrik Szurmant,et al.  Diversity in Chemotaxis Mechanisms among the Bacteria and Archaea , 2004, Microbiology and Molecular Biology Reviews.

[7]  Kenji Oosawa,et al.  Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis , 1988, Cell.

[8]  Mingshan Li,et al.  Nanodiscs separate chemoreceptor oligomeric states and reveal their signaling properties. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Howard C. Berg,et al.  Signal processing times in bacterial chemotaxis , 1982, Nature.

[10]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[11]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Ann M Stock,et al.  Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. , 1998, Biochemistry.

[14]  J. Adler,et al.  The Range of Attractant Concentrations for Bacterial Chemotaxis and the Threshold and Size of Response over This Range , 1973, The Journal of general physiology.

[15]  S. L. Porter,et al.  CheR- and CheB-Dependent Chemosensory Adaptation System of Rhodobacter sphaeroides , 2001, Journal of bacteriology.

[16]  G. Wadhams,et al.  Targeting of two signal transduction pathways to different regions of the bacterial cell , 2003, Molecular microbiology.

[17]  S. L. Porter,et al.  Rhodobacter sphaeroides: complexity in chemotactic signalling. , 2008, Trends in microbiology.

[18]  P K Maini,et al.  Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell , 2008, Bulletin of mathematical biology.

[19]  W. Brogan Modern Control Theory , 1971 .

[20]  Gesine Reinert,et al.  Deciphering chemotaxis pathways using cross species comparisons , 2010, BMC Systems Biology.

[21]  Drew Endy,et al.  Stimulus Design for Model Selection and Validation in Cell Signaling , 2008, PLoS Comput. Biol..

[22]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[23]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[24]  Tadeusz Kaczorek,et al.  Robust and optimal control , 1996 .

[25]  C. V. Rao,et al.  The three adaptation systems of Bacillus subtilis chemotaxis. , 2008, Trends in microbiology.

[26]  Dennis Bray,et al.  Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis , 2000, Nature Cell Biology.

[27]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[28]  Judith P Armitage,et al.  Phosphotransfer in Rhodobacter sphaeroides chemotaxis. , 2002, Journal of molecular biology.

[29]  Judith P Armitage,et al.  A bifunctional kinase-phosphatase in bacterial chemotaxis , 2008, Proceedings of the National Academy of Sciences.

[30]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[31]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[32]  Steven P. Asprey,et al.  On the design of optimally informative dynamic experiments for model discrimination in multiresponse nonlinear situations , 2003 .

[33]  M. Goodwin,et al.  Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. , 2001, Microbiology.

[34]  Adam P Arkin,et al.  Design and Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia coli and Bacillus subtilis , 2004, PLoS biology.

[35]  B. Wren,et al.  Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. , 2002, Trends in microbiology.