Subdivision surfaces for CAD - an overview

Subdivision surfaces refer to a class of modelling schemes that define an object through recursive subdivision starting from an initial control mesh. Similar to B-splines, the final surface is defined by the vertices of the initial control mesh. These surfaces were initially conceived as an extension of splines in modelling objects with a control mesh of arbitrary topology. They exhibit a number of advantages over traditional splines. Today one can find a variety of subdivision schemes for geometric design and graphics applications. This paper provides an overview of subdivision surfaces with a particular emphasis on schemes generalizing splines. Some common issues on subdivision surface modelling are addressed. Several key topics, such as scheme construction, property analysis, parametric evaluation and subdivision surface fitting, are discussed. Some other important topics are also summarized for potential future research and development. Several examples are provided to highlight the modelling capability of subdivision surfaces for CAD applications.

[1]  Ayman Habib,et al.  Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..

[2]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[3]  Leif Kobbelt,et al.  API Design for adaptive subdivision schemes , 2004, Comput. Graph..

[4]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[5]  Joe D. Warren,et al.  A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..

[6]  Tony DeRose,et al.  Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.

[7]  Denis Z orin Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .

[8]  M. A. Sabin,et al.  Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.

[9]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision surfaces , 2002, The Visual Computer.

[10]  A. A. Ball,et al.  Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.

[11]  Hartmut Prautzsch,et al.  A G2-Subdivision Algorithm , 1996, Geometric Modelling.

[12]  Gang Zhao,et al.  Target curvature driven fairing algorithm for planar cubic B-spline curves , 2004, Comput. Aided Geom. Des..

[13]  Henning Biermann,et al.  Sharp Features on Multiresolution Subdivision Surfaces , 2002, Graph. Model..

[14]  Jörg Peters,et al.  The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.

[15]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[16]  Luiz Velho,et al.  4-8 Subdivision , 2001, Comput. Aided Geom. Des..

[17]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[18]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[19]  Ahmad H. Nasri,et al.  Interpolating meshes of boundary intersecting curves by subdivision surfaces , 2000, The Visual Computer.

[20]  Ulf Labsik,et al.  Interpolatory √3‐Subdivision , 2000 .

[21]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[22]  Malcolm Sabin,et al.  Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[23]  A. A. Ball,et al.  Recursively generated B-spline surfaces , 1984 .

[24]  G. Umlauf Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .

[25]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[26]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[27]  D. Ross Computer-aided design , 1961, CACM.

[28]  Peter Schröder,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..

[29]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[30]  Hiromasa Suzuki,et al.  Subdivision surface fitting to a range of points , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[31]  Henning Biermann,et al.  Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.

[32]  Peter Schröder,et al.  Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..

[33]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[34]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[35]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[36]  Jos Stam,et al.  On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..

[37]  Weiyin Ma,et al.  Catmull-Clark surface fitting for reverse engineering applications , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[38]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[39]  P. C. Das,et al.  A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes , 2003, Comput. Aided Geom. Des..

[40]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[41]  Hujun Bao,et al.  Interpolatory v2-Subdivision Surfaces , 2004, GMP.

[42]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[43]  I. Daubechies,et al.  Regularity of Irregular Subdivision , 1999 .

[44]  Richard H. Bartels,et al.  Multiresolution Surfaces having Arbitrary Topologies by a Reverse Doo Subdivision Method , 2002, Comput. Graph. Forum.

[45]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[46]  Richard H. Bartels,et al.  Multiresolution Curve and Surface Representation: Reversing Subdivision Rules by Least‐Squares Data Fitting , 1999, Comput. Graph. Forum.

[47]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[48]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[49]  R. Bartels,et al.  Reversing subdivision rules: local linear conditions and observations on inner products , 2000 .

[50]  Ahmad H. Nasri,et al.  Taxonomy of interpolation constraints on recursive subdivision curves , 2002, The Visual Computer.

[51]  Zhigeng Pan,et al.  A direct approach for subdivision surface fitting from a dense triangle mesh , 2004, Comput. Aided Des..

[52]  Hujun Bao,et al.  √2 Subdivision for quadrilateral meshes , 2004, The Visual Computer.

[53]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[54]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[55]  Heinrich Müller,et al.  Adaptive subdivision curves and surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[56]  Denis Zorin,et al.  A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..

[57]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[58]  Scott Schaefer,et al.  A factored approach to subdivision surfaces , 2004, IEEE Computer Graphics and Applications.

[59]  Charles T. Loop,et al.  Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.

[60]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[61]  Weiyin Ma,et al.  Smooth multiple B-spline surface fitting with Catmull%ndash;Clark subdivision surfaces for extraordinary corner patches , 2002, The Visual Computer.

[62]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..