Subdivision surfaces for CAD - an overview
暂无分享,去创建一个
[1] Ayman Habib,et al. Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..
[2] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[3] Leif Kobbelt,et al. API Design for adaptive subdivision schemes , 2004, Comput. Graph..
[4] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[5] Joe D. Warren,et al. A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..
[6] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[7] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[8] M. A. Sabin,et al. Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.
[9] Ahmad H. Nasri,et al. Taxonomy of interpolation constraints on recursive subdivision surfaces , 2002, The Visual Computer.
[10] A. A. Ball,et al. Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.
[11] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[12] Gang Zhao,et al. Target curvature driven fairing algorithm for planar cubic B-spline curves , 2004, Comput. Aided Geom. Des..
[13] Henning Biermann,et al. Sharp Features on Multiresolution Subdivision Surfaces , 2002, Graph. Model..
[14] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[15] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[16] Luiz Velho,et al. 4-8 Subdivision , 2001, Comput. Aided Geom. Des..
[17] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[18] Hugues Hoppe,et al. Displaced subdivision surfaces , 2000, SIGGRAPH.
[19] Ahmad H. Nasri,et al. Interpolating meshes of boundary intersecting curves by subdivision surfaces , 2000, The Visual Computer.
[20] Ulf Labsik,et al. Interpolatory √3‐Subdivision , 2000 .
[21] Neil A. Dodgson,et al. Advances in Multiresolution for Geometric Modelling , 2005 .
[22] Malcolm Sabin,et al. Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[23] A. A. Ball,et al. Recursively generated B-spline surfaces , 1984 .
[24] G. Umlauf. Analyzing the Characteristic Map of Triangular Subdivision Schemes , 2000 .
[25] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[26] Peter Schröder,et al. Normal meshes , 2000, SIGGRAPH.
[27] D. Ross. Computer-aided design , 1961, CACM.
[28] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[29] Jean Schweitzer,et al. Analysis and application of subdivision surfaces , 1996 .
[30] Hiromasa Suzuki,et al. Subdivision surface fitting to a range of points , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).
[31] Henning Biermann,et al. Approximate Boolean operations on free-form solids , 2001, SIGGRAPH.
[32] Peter Schröder,et al. Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..
[33] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[34] Peter Schröder,et al. Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..
[35] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[36] Jos Stam,et al. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001, Comput. Aided Geom. Des..
[37] Weiyin Ma,et al. Catmull-Clark surface fitting for reverse engineering applications , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.
[38] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[39] P. C. Das,et al. A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes , 2003, Comput. Aided Geom. Des..
[40] Josef Hoschek,et al. Handbook of Computer Aided Geometric Design , 2002 .
[41] Hujun Bao,et al. Interpolatory v2-Subdivision Surfaces , 2004, GMP.
[42] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[43] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .
[44] Richard H. Bartels,et al. Multiresolution Surfaces having Arbitrary Topologies by a Reverse Doo Subdivision Method , 2002, Comput. Graph. Forum.
[45] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[46] Richard H. Bartels,et al. Multiresolution Curve and Surface Representation: Reversing Subdivision Rules by Least‐Squares Data Fitting , 1999, Comput. Graph. Forum.
[47] D. Zorin,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .
[48] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[49] R. Bartels,et al. Reversing subdivision rules: local linear conditions and observations on inner products , 2000 .
[50] Ahmad H. Nasri,et al. Taxonomy of interpolation constraints on recursive subdivision curves , 2002, The Visual Computer.
[51] Zhigeng Pan,et al. A direct approach for subdivision surface fitting from a dense triangle mesh , 2004, Comput. Aided Des..
[52] Hujun Bao,et al. √2 Subdivision for quadrilateral meshes , 2004, The Visual Computer.
[53] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[54] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[55] Heinrich Müller,et al. Adaptive subdivision curves and surfaces , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).
[56] Denis Zorin,et al. A Method for Analysis of C1 -Continuity of Subdivision Surfaces , 2000, SIAM J. Numer. Anal..
[57] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[58] Scott Schaefer,et al. A factored approach to subdivision surfaces , 2004, IEEE Computer Graphics and Applications.
[59] Charles T. Loop,et al. Quad/Triangle Subdivision , 2003, Comput. Graph. Forum.
[60] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[61] Weiyin Ma,et al. Smooth multiple B-spline surface fitting with Catmull%ndash;Clark subdivision surfaces for extraordinary corner patches , 2002, The Visual Computer.
[62] Peter Schröder,et al. Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..