An atmospheric correction algorithm for thermal infrared multispectral data over land-a water-vapor scaling method

Thermal infrared (TIR) multispectral data over land can be atmospherically corrected by radiative transfer calculations combined with global assimilated data from a weather forecast system. This approach is advantageous to operational processing but is not accurate. A new atmospheric correction algorithm with global assimilated data, a water vapor scaling (WVS) method, has improved results. In this algorithm, the accuracy of global assimilated data is markedly improved on a pixel-by-pixel basis as follows: (1) selecting gray pixels from an image; (2) estimating the scaling factors for the water-vapor profiles of gray pixels by an improved multichannel algorithm; (3) estimating the scaling factors for the water-vapor profiles of nongray pixels by horizontal interpolation; and (4) improving the water-vapor profiles of all pixels with the scaling factors. The proposed method can be applied if the image has one or more gray pixels. The simulation results for the advanced spaceborne thermal emission and reflection radiometer (ASTER) TIR subsystem show that the proposed method reduces errors on air temperature profiles as well as on water-vapor profiles and is as accurate as atmospheric correction with radiosonde measurements.

[1]  F. Becker,et al.  The impact of spectral emissivity on the measurement of land surface temperature from a satellite , 1987 .

[2]  Eugenia Kalnay,et al.  Global Numerical Weather Prediction at the National Meteorological Center , 1990 .

[3]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  Z. Li,et al.  Feasibility of land surface temperature and emissivity determination from AVHRR data , 1993 .

[5]  Lu Zhang,et al.  A one-layer resistance model for estimating regional evapotranspiration using remote sensing data , 1995 .

[6]  Zhao-Liang Li,et al.  Improvements in the split-window technique for land surface temperature determination , 1994, IEEE Trans. Geosci. Remote. Sens..

[7]  A. Kahle,et al.  Combined use of visible, reflected infrared, and thermal infrared images for mapping Hawaiian lava flows , 1991 .

[8]  A. Kahle Surface emittance, temperature, and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California , 1987 .

[9]  R. Lyon Analysis of rocks by spectral infrared emission (8 to 25 microns) , 1965 .

[10]  C. Ottlé,et al.  Effect of atmospheric absorption and surface emissivity on the determination of land surface temperature from infrared satellite data , 1993 .

[11]  William P. Kustas,et al.  Monitoring land surface fluxes using ASTER observations , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  Anne B. Kahle,et al.  Thermal infrared spectral character of Hawaiian basaltic glasses , 1990 .

[13]  Zhao-Liang Li,et al.  Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[14]  Yann Kerr,et al.  Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm , 1992 .

[15]  P. S. Kealy,et al.  A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies , 1992 .

[16]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[17]  M. Jentoft-Nilsen,et al.  Advanced Spaceborne Thermal Emission & Reflection Radiometer Algorithm Theoretical Basic Document for: An Atmospheric Correction Method for ASTER Thermal Radiometry Over Land , 1999 .

[18]  Z. Li,et al.  Temperature-independent spectral indices in thermal infrared bands , 1990 .

[19]  K. Watson Regional thermal-inertia mapping from an experimental satellite , 1982 .

[20]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[21]  Roger Saunders,et al.  Theoretical algorithms for satellite‐derived sea surface temperatures , 1989 .

[22]  T. Phulpin,et al.  Atmospheric correction of infrared measurements of sea surface temperature using channels at 3.7, 11 and 12 Μm , 1980 .

[23]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .

[24]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[25]  D. Vidal-Madjar,et al.  Estimation of Land Surface Temperature with NOAA9 Data , 1992 .

[26]  J. Salisbury,et al.  Emissivity of terrestrial materials in the 3–5 μm atmospheric window☆ , 1992 .

[27]  John W. Salisbury,et al.  Emissivity of terrestrial materials in the 8-14 microns atmospheric window , 1992 .

[28]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[29]  T. Schmugge,et al.  Recovering Surface Temperature and Emissivity from Thermal Infrared Multispectral Data , 1998 .

[30]  Vincent J. Realmuto,et al.  The advanced spaceborne thermal emission and reflectance radiometer (Aster) , 1991, Int. J. Imaging Syst. Technol..

[31]  C. Francois,et al.  Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data , 1996, IEEE Trans. Geosci. Remote. Sens..

[32]  J. C. Price,et al.  Land surface temperature measurements from the split window channels of the NOAA 7 Advanced Very High Resolution Radiometer , 1984 .

[33]  T. Hoshi,et al.  Simultaneous Estimation of Atmospheric Correction Parameters, Surface Temperature and Spectral Emissivity using Thermal Infrared Multispectral Scanner Data , 1997 .

[34]  José A. Sobrino,et al.  Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5 , 1991 .