Femtosecond surface plasmon interferometry.

We demonstrate femtosecond plasmonic interferometry with a novel geometry. The plasmonic microinterferometer consists of a tilted slit-groove pair. This arrangement allows for (i) interferometric measurements at a single wavelength with a single microinterferometer and (ii) unambiguous discrimination between changes in real and imaginary parts of the metal dielectric function. The performance is demonstrated by monitoring the sub-picosecond dynamics of hot electrons in gold.

[1]  N. Rotenberg,et al.  Ultrafast Active Plasmonics on Gold Films , 2011 .

[2]  E. Schöll,et al.  Impact of Coulomb scattering on the ultrafast gain recovery in InGaAs quantum dots. , 2008, Physical review letters.

[3]  C. Thirstrup,et al.  Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface , 2008 .

[4]  L. Novotný,et al.  Nonlinear excitation of surface plasmon polaritons by four-wave mixing. , 2008, Physical review letters.

[5]  J. Bigot,et al.  Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions. , 2008, Optics express.

[6]  Nikolay I. Zheludev,et al.  Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals , 2008 .

[7]  Z. Vardeny,et al.  Ultrafast response of surface electromagnetic waves in an aluminum film perforated with subwavelength hole arrays. , 2007, Physical review letters.

[8]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[9]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[10]  M. Artemyev,et al.  Exciton-plasmon-photon conversion in plasmonic nanostructures. , 2007, Physical review letters.

[11]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[12]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[13]  T. Ebbesen,et al.  Surface plasmon interferometry: measuring group velocity of surface plasmons. , 2007, Optics letters.

[14]  Chunlei Guo,et al.  Resolving dynamics of acoustic phonons by surface plasmons. , 2007, Optics letters.

[15]  Atsushi Kubo,et al.  Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. , 2007, Nano letters.

[16]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[17]  D. Pohl,et al.  Resonant optical antennas and single emitters , 2007 .

[18]  Klaus Sokolowski-Tinten,et al.  Multiphoton ionization in dielectrics: comparison of circular and linear polarization. , 2006 .

[19]  H. Lezec,et al.  The response of nanostructured surfaces in the near field , 2006 .

[20]  K. Sokolowski-Tinten,et al.  Ultrafast imaging interferometry at femtosecond-laser-excited surfaces , 2006 .

[21]  H. J. Lezec,et al.  The optical response of nanostructured surfaces and the composite diffracted evanescent wave model , 2006 .

[22]  U. Woggon,et al.  Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity. , 2005, Physical review letters.

[23]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[24]  E. Eliel,et al.  Plasmon-assisted two-slit transmission: Young's experiment revisited. , 2005, Physical review letters.

[25]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[26]  Klaus Sokolowski-Tinten,et al.  Ionization mechanisms in dielectrics irradiated by femtosecond laser pulses (Poster Award Paper) , 2004, SPIE High-Power Laser Ablation.

[27]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[28]  Mischa Bonn,et al.  Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport , 2000 .

[29]  H. Petek,et al.  HOLE DECOHERENCE OF D BANDS IN COPPER , 1999 .

[30]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[31]  V. Gusev,et al.  Ultrafast nonequilibrium dynamics of electrons in metals , 1998 .

[32]  Hisashi Nagano,et al.  OPTICAL DEPHASING IN CU(111) MEASURED BY INTERFEROMETRIC TWO-PHOTON TIME-RESOLVED PHOTOEMISSION , 1997 .

[33]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[34]  Lagendijk,et al.  Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals. , 1992, Physical review. B, Condensed matter.

[35]  A. Lagendijk,et al.  Ultrafast relaxation of electrons probed by surface plasmons at a thin silver film. , 1990, Physical review letters.

[36]  A. Lagendijk,et al.  Ultrashort surface-plasmon and phonon dynamics. , 1988, Physical review letters.

[37]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[38]  G. W. Ford,et al.  Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. , 1981, Optics letters.

[39]  H. Morawitz,et al.  Cooperative Emission of an Excited Molecular Monolayer into Surface Plasmons , 1976 .

[40]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .