The algebraic basis of mathematical morphology : II. Openings and closings
暂无分享,去创建一个
[1] Petros Maragos. A Representation Theory for Morphological Image and Signal Processing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Henk J. A. M. Heijmans,et al. The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..
[3] H. Heijmans. Mathematical morphology: an algebraic approach , 1987 .
[4] H.J.A.M. Heijmans. From binary to grey-level morphology , 1990 .
[5] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[6] Christian Ronse,et al. Why mathematical morphology needs complete lattices , 1990, Signal Process..
[7] Henk J. A. M. Heijmans,et al. Theoretical Aspects of Gray-Level Morphology , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[8] W. Lauder Lindsay,et al. On Polymorphismin the Fructificationof Lichens , 1987 .
[9] Edward J. Delp,et al. The analysis of morphological filters with multiple structuring elements , 1990, Comput. Vis. Graph. Image Process..
[10] Gunilla Borgefors,et al. Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..
[11] H.J.A.M. Heijmans. Iterations of morphological transformations , 1989 .