Comparing Two Photo-Reconstruction Methods to Produce High Density Point Clouds and DEMs in the Corral del Veleta Rock Glacier (Sierra Nevada, Spain)

In this paper, two methods based on computer vision are presented in order to produce dense point clouds and high resolution DEMs (digital elevation models) of the Corral del Veleta rock glacier in Sierra Nevada (Spain). The first one is a semi-automatic 3D photo-reconstruction method (SA-3D-PR) based on the Scale-Invariant Feature Transform algorithm and the epipolar geometry theory that uses oblique photographs and camera calibration parameters as input. The second method is fully automatic (FA-3D-PR) and is based on the recently released software 123D-Catch that uses the Structure from Motion and MultiView Stereo algorithms and needs as input oblique photographs and some measurements in order to scale and geo-reference the resulting model. The accuracy of the models was tested using as benchmark a 3D model registered by means of a Terrestrial Laser Scanner (TLS). The results indicate that both methods can be applied to micro-scale study of rock glacier morphologies and processes with average distances to the TLS point cloud of 0.28 m and 0.21 m, for the SA-3D-PR and the FA-3D-PR methods, respectively. The performance of the models was also tested by means of the dimensionless relative precision ratio parameter resulting in figures of 1:1071 and 1:1429 for the SA-3D-PR and the FA-3D-PR methods, respectively. Finally, Digital Elevation Models (DEMs) of the study area were produced and compared with the TLS-derived DEM. The

[1]  Robert Kenner,et al.  Investigation of rock and ice loss in a recently deglaciated mountain rock wall using terrestrial laser scanning: Gemsstock, Swiss Alps , 2011 .

[2]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[3]  Enrique Serrano,et al.  Rock glacier dynamics in marginal periglacial environments , 2010 .

[4]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. Janke,et al.  Using airborne LiDAR and USGS DEM data for assessing rock glaciers and glaciers , 2013 .

[6]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Iuko Tsuwa,et al.  Near real-time monitoring of flow velocity and direction in the floating ice tongue of the Shirase Glacier using low-cost GPS buoys , 2013, Earth, Planets and Space.

[8]  E. Vuillermoz,et al.  Spatial distribution of debris thickness and melting from remote-sensing and meteorological data, at debris-covered Baltoro glacier, Karakoram, Pakistan , 2008, Annals of Glaciology.

[9]  Andreas Kääb,et al.  Monitoring topographic changes in a periglacial high‐mountain face using high‐resolution DTMs, Monte Rosa East Face, Italian Alps , 2011 .

[10]  J. Chandler,et al.  John Fryer assess its accuracy and applications . AutoDesk 123 D Catch : How accurate is it ? , 2022 .

[11]  S. Robson,et al.  Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application , 2012 .

[12]  M. Westoby,et al.  ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications , 2012 .

[13]  Bruce H. Raup,et al.  Remote sensing of glaciers , 2014 .

[14]  Christophe Lambiel,et al.  Contribution of real‐time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps , 2004 .

[15]  Antonio Gómez Ortiz,et al.  DEGLACIACIÓN RECIENTE DE SIERRA NEVADA. REPERCUSIONES MORFOGÉNICAS, NUEVOS DATOS Y PERSPECTIVAS DE ESTUDIO FUTURO , 2004 .

[16]  Josechu J. Guerrero,et al.  Photogrammetric Methodology for the Production of Geomorphologic Maps: Application to the Veleta Rock Glacier (Sierra Nevada, Granada, Spain) , 2009, Remote. Sens..

[17]  N. Mitra,et al.  4-points congruent sets for robust pairwise surface registration , 2008, SIGGRAPH 2008.

[18]  Alberto Guarnieri,et al.  Current behaviour and dynamics of the lowermost italian glacier (montasio occidentale, julian alps) , 2013 .

[19]  Andreas Kääb,et al.  Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies , 2007 .

[20]  J. A. Gomez,et al.  Comparing the accuracy of several field methods for measuring gully erosion , 2012 .

[21]  C. Hugenholtz,et al.  Brief Communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement , 2013 .

[22]  D. Girardeau-Montaut,et al.  CHANGE DETECTION ON POINTS CLOUD DATA ACQUIRED W ITH A GROUND LASER SCANNER , 2005 .

[23]  Richard Szeliski,et al.  Modeling the World from Internet Photo Collections , 2008, International Journal of Computer Vision.

[24]  Astrid Lambrecht,et al.  On the potential of very high-resolution repeat DEMs in glacial and periglacial environments , 2010 .

[25]  Viktor Kaufmann,et al.  The evolution of rock glacier monitoring using terrestrial photogrammetry: the example of Äusseres Hochebenkar rock glacier (Austria) , 2012 .

[26]  K. Grunewald,et al.  Europe’s southernmost glaciers: response and adaptation to climate change , 2010, Journal of Glaciology.

[27]  R. Ladstädter,et al.  MONITORING OF ACTIVE ROCK GLACIERS BY MEANS OF DIGITAL PHOTOGRAMMETRY , 2002 .

[28]  Petri Pellikka,et al.  Remote Sensing of Glaciers : Techniques for Topographic, Spatial and Thematic Mapping of Glaciers , 2009 .

[29]  Arko Lucieer,et al.  Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery , 2012, Remote. Sens..

[30]  Viktor Kaufmann,et al.  SPATIO-TEMPORAL ANALYSIS OF THE DYNAMIC BEHAVIOUR OF THE HOCHEBENKAR ROCK GLACIERS ( OETZTAL ALPS , AUSTRIA ) BY MEANS OF DIGITAL PHOTOGRAMMETRIC METHODS , 2001 .

[31]  Karl Krainer,et al.  Flow velocities of active rock glaciers in the austrian alps , 2006 .

[32]  Jennifer M. Ayers,et al.  Unraveling dynamical controls on the North Pacific carbon sink , 2012 .

[33]  L. Thompson,et al.  Measurement of the retreat of Qori Kalis glacier in the tropical Andes of Peru by terrestrial photogrammetry , 1993 .

[34]  Andreas Kääb,et al.  Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps , 1997 .

[35]  A. Bauer,et al.  LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008 , 2009 .

[36]  E. Baltsavias,et al.  Digital Surface Modelling by Airborne Laser Scanning and Digital Photogrammetry for Glacier Monitoring , 2001 .

[37]  Ian Owens,et al.  Using Ground-based Laser Scanning to Monitor Surface Change on the Rolleston Glacier, New Zealand , 2009 .

[38]  G. Paar,et al.  Terrestrial laser scanning for rock glacier monitoring , 2002 .

[39]  Miguel Ramos,et al.  Location of permafrost in marginal regions: Corral del Veleta, Sierra Nevada, Spain , 2001 .

[40]  Vicenç Palà,et al.  Fotogrametría terrestre en el Glaciar Johnsons, Isla Livingston, Antártida , 1999 .

[41]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[42]  Andreas Kääb,et al.  Geometry and dynamics of two lobe-shaped rock glaciers in the permafrost of Svalbard , 2002 .

[43]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[44]  Roberto Cipolla,et al.  Structure from motion , 2008 .

[45]  Einar M. Rønquist,et al.  Foreword , 1999, Biological Psychiatry.

[46]  Viktor Kaufmann,et al.  Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs; two case studies in the Austrian Alps , 2003 .

[47]  A. Gómez Ortiz,et al.  Modern deglaciation in Sierra Nevada : morphogenetic effects, new data and out-look regardings future studies , 2013 .

[48]  J. José,et al.  Rock glacier dynamics in a marginal periglacial high mountain environment: Flow, movement (1991–2000) and structure of the Argualas rock glacier, the Pyrenees , 2006 .

[49]  S. Ullman The interpretation of structure from motion , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[50]  Hossein Ghalkhani,et al.  Elevation changes of Alamkouh glacier in Iran since 1955, based on remote sensing data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[51]  Richard Ladstädter,et al.  Application of Terrestrial Photogrammetry for Glacier Monitoring in Alpine Environments , 2008 .

[52]  Jon Ove Hagen,et al.  Kinematic GPS survey of geometry changes on Svalbard glaciers , 1997 .

[53]  Maarten Vergauwen,et al.  ARC 3D Webservice , 2009 .

[54]  Á. Gómez‐Gutiérrez,et al.  Using 3D photo-reconstruction methods to estimate gully headcut erosion , 2014 .

[55]  E. Serrano,et al.  Geomatics techniques applied to glaciers, rock glaciers, and ice patches in spain (1991–2012) , 2014 .

[56]  Mark A. Fonstad,et al.  Topographic structure from motion: a new development in photogrammetric measurement , 2013 .

[57]  Claudio Smiraglia,et al.  Glaciological characteristics of the ablation zone of Baltoro glacier, Karakoram, Pakistan , 2006, Annals of Glaciology.

[58]  Richard Szeliski,et al.  A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[59]  José Juan de Sanjosé-Blasco,et al.  Application of geomatic techniques to monitoring of the dynamics and to mapping of the Veleta rock glacier (Sierra Nevada, Spain) , 2007 .