Characterization of MHC class-I restricted TCRαβ+ CD4− CD8− double negative T cells recognizing the gp100 antigen from a melanoma patient after gp100 vaccination

[1]  F. Rieux-Laucat,et al.  Human TCR α/β+ CD4−CD8− Double-Negative T Cells in Patients with Autoimmune Lymphoproliferative Syndrome Express Restricted Vβ TCR Diversity and Are Clonally Related to CD8+ T Cells1 , 2008, The Journal of Immunology.

[2]  A. Jevnikar,et al.  Adoptive transfer of double negative T regulatory cells induces B‐cell death in vivo and alters rejection pattern of rat‐to‐mouse heart transplantation , 2008, Xenotransplantation.

[3]  F. V. Laethem,et al.  Deletion of CD4 and CD8 Coreceptors Permits Generation of αβT Cells that Recognize Antigens Independently of the MHC , 2007 .

[4]  M. Nishimura,et al.  Influence of human CD8 on antigen recognition by T-cell receptor-transduced cells. , 2006, Cancer research.

[5]  Hao Wang,et al.  Double-Negative T Cells, Activated by Xenoantigen, Lyse Autologous B and T Cells Using a Perforin/Granzyme-Dependent, Fas-Fas Ligand-Independent Pathway1 , 2006, The Journal of Immunology.

[6]  Li Zhang,et al.  Double-Negative T Regulatory Cells Can Develop Outside the Thymus and Do Not Mature from CD8+ T Cell Precursors1 , 2006, The Journal of Immunology.

[7]  M. Oosterwegel,et al.  CD28 and ICOS: similar or separate costimulators of T cells? , 2006, Immunology letters.

[8]  M. Nishimura,et al.  Identification of a hepatitis C virus–reactive T cell receptor that does not require CD8 for target cell recognition , 2006, Hepatology.

[9]  R. Hagedoorn,et al.  αβ T-Cell Receptor Engineered γδ T Cells Mediate Effective Antileukemic Reactivity , 2006 .

[10]  Andreas Mackensen,et al.  Isolation and characterization of human antigen-specific TCRαβ+ CD4-CD8- double-negative regulatory T cells , 2005 .

[11]  M. Nishimura,et al.  Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. , 2005, Cancer research.

[12]  B. Seliger,et al.  High Frequency of Functionally Active Melan-A–Specific T Cells in a Patient with Progressive Immunoproteasome-Deficient Melanoma , 2004, Cancer Research.

[13]  B. Seliger,et al.  High frequency of functionally active Melan-A specific T cells in a patient with progressive immunoproteasome-deficient melanoma , 2004, Cancer Cell International.

[14]  G. Mufti,et al.  Role of 4-1BB:4-1BB ligand in cancer immunotherapy , 2004, Cancer Gene Therapy.

[15]  Li Zhang,et al.  Antitumor activity mediated by double-negative T cells. , 2003, Cancer research.

[16]  J. Borst,et al.  CD27 Promotes Survival of Activated T Cells and Complements CD28 in Generation and Establishment of the Effector T Cell Pool , 2003, The Journal of experimental medicine.

[17]  Sheryl K Elkin,et al.  A Role for the B7-1/B7-2:CD28/CTLA-4 Pathway During Negative Selection1 , 2003, The Journal of Immunology.

[18]  A. Mackensen,et al.  Survival and Tumor Localization of Adoptively Transferred Melan-A-Specific T Cells in Melanoma Patients 1 , 2003, The Journal of Immunology.

[19]  J. Hoofnagle,et al.  Impaired Effector Function of Hepatitis C Virus-Specific CD8+ T Cells in Chronic Hepatitis C Virus Infection1 , 2002, The Journal of Immunology.

[20]  M. Bevan,et al.  Positive selection of MHC class Ib–restricted CD8+ T cells on hematopoietic cells , 2002, Nature Immunology.

[21]  Yang Liu,et al.  Perinatal Blockade of B7-1 and B7-2 Inhibits Clonal Deletion of Highly Pathogenic Autoreactive T Cells , 2002, The Journal of experimental medicine.

[22]  Li Zhang,et al.  Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression , 2000, Nature Medicine.

[23]  S. Jameson,et al.  Critical Role for Cd8 in T Cell Receptor Binding and Activation by Peptide/Major Histocompatibility Complex Multimers , 2000, The Journal of experimental medicine.

[24]  S. Rosenberg,et al.  MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte. , 1999, Cancer research.

[25]  S. Rosenberg,et al.  Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers anti-tumor reactivity. , 1999, Journal of immunology.

[26]  M. Croft,et al.  OX-40: life beyond the effector T cell stage. , 1998, Seminars in immunology.

[27]  P. A. Peterson,et al.  CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes , 1996, Nature.

[28]  P. Kourilsky,et al.  T-cell repertoire diversity and clonal expansions in normal and clinical samples. , 1995, Immunology today.

[29]  S. Rosenberg,et al.  Characterization of the functional specificity of a cloned T-cell receptor heterodimer recognizing the MART-1 melanoma antigen. , 1995, Cancer research.

[30]  J. Sprent,et al.  Resting and activated T cells display different requirements for CD8 molecules , 1994, The Journal of experimental medicine.

[31]  G. Carcelain,et al.  Direct evidence to support the immunosurveillance concept in a human regressive melanoma. , 1994, The Journal of clinical investigation.

[32]  M. Nagarkatti,et al.  Double-negative T cells from MRL-lpr/lpr mice mediate cytolytic activity when triggered through adhesion molecules and constitutively express perforin gene , 1993, The Journal of experimental medicine.

[33]  R. Eisenberg,et al.  Selection of the T cell receptor repertoire in Lpr mice. , 1993, Journal of immunology.

[34]  R. Budd,et al.  CD2-CD4-CD8- lymph node T lymphocytes in MRL lpr/lpr mice are derived from a CD2+CD4+CD8+ thymic precursor. , 1993, Journal of immunology.

[35]  V. Engelhard,et al.  Species specificity in the interaction of CD8 with the alpha 3 domain of MHC class I molecules. , 1992, Journal of immunology.

[36]  J. Frelinger,et al.  A single amino acid substitution in an MHC class I molecule allows heteroclitic recognition by lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes. , 1991, Journal of immunology.

[37]  A. Singer,et al.  Phenotype, ontogeny, and repertoire of CD4-CD8- T cell receptor alpha beta + thymocytes. Variable influence of self-antigens on T cell receptor V beta usage. , 1991, Journal of immunology.

[38]  J. Hirsch,et al.  Origin and selection of peripheral CD4−CD8− T cells bearing α/β T cell antigen receptors in autoimmune gld mice , 1990 .

[39]  P. Anderson,et al.  Molecular Interactions, T‐Cell Subsets and a Role of the CD4/CD8:p56lck Complex in Human T‐Cell Activation , 1989, Immunological reviews.

[40]  P. Parham,et al.  Polymorphism in the α3 domain of HLA-A molecules affects binding to CD8 , 1989, Nature.

[41]  J. Sprent,et al.  Functions of Purified L3T4+ and Lyt‐2+ Cells in vitro and in vivo , 1986, Immunological reviews.

[42]  W. Seaman,et al.  Lyt-2 and lyt-3 antigens are on two different polypeptide subunits linked by disulfide bonds. Relationship of subunits to T cell cytolytic activity , 1981, The Journal of experimental medicine.

[43]  F. Rieux-Laucat,et al.  Human TCR alpha/beta+ CD4-CD8- double-negative T cells in patients with autoimmune lymphoproliferative syndrome express restricted Vbeta TCR diversity and are clonally related to CD8+ T cells. , 2008, Journal of immunology.

[44]  A. Singer,et al.  Deletion of CD4 and CD8 coreceptors permits generation of alphabetaT cells that recognize antigens independently of the MHC. , 2007, Immunity.

[45]  M. V. van Loenen,et al.  Alphabeta T-cell receptor engineered gammadelta T cells mediate effective antileukemic reactivity. , 2006, Cancer research.

[46]  Pedro Romero,et al.  Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. , 2005, Immunity.

[47]  P. Cresswell,et al.  Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids , 2004, Immunogenetics.

[48]  R. Zinkernagel,et al.  The discovery of MHC restriction. , 1997, Immunology today.

[49]  J. A. Hirsch,et al.  Origin and selection of peripheral CD4-CD8- T cells bearing alpha/beta T cell antigen receptors in autoimmune gld mice. , 1990, European journal of immunology.

[50]  P. Parham,et al.  Polymorphism in the alpha 3 domain of HLA-A molecules affects binding to CD8. , 1989, Nature.