A Taylor expansion approach using Faà di Bruno's formula for solving nonlinear integral equations of the second and third kind

Purpose – The purpose of this paper is to present a method for solving nonlinear integral equations of the second and third kind.Design/methodology/approach – The method converts the nonlinear integral equation into a system of nonlinear equations. By solving the system, the solution can be determined. Comparing the methodology with some known techniques shows that the present approach is simple, easy to use, and highly accurate.Findings – The proposed technique allows the authors to obtain an approximate solution in a series form. Test problems are given to illustrate the pertinent features of the method. The accuracy of the numerical results indicates that the technique is efficient and well‐suited for solving nonlinear integral equations.Originality/value – The present approach provides a reliable technique that avoids the difficulties and massive computational work if compared with the traditional techniques and does not require discretization in order to find solutions to the given problems.

[1]  Khosrow Maleknejad,et al.  Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials , 2007, Appl. Math. Comput..

[2]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[3]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .

[4]  Salih Yalçinbas Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..

[5]  Ayşegül Akyüz-Daşcioğlu Handan Çerdik-Yaslan,et al.  Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro-Differential Equations , 2006 .

[6]  Giuseppe Saccomandi,et al.  New results for convergence of Adomian's method applied to integral equations , 1992 .

[7]  Maria Meehan,et al.  Existence Theory for Nonlinear Integral and Integrodifferential Equations , 1998 .

[8]  Ángel Martín del Rey,et al.  Faa' di Bruno's formula, lattices, and partitions , 2005, Discret. Appl. Math..

[9]  Esmail Babolian,et al.  Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets , 2009 .

[10]  A. Beardon The Differentiation of a Composite Function , 1971, The Mathematical Gazette.

[11]  John Riordan,et al.  Introduction to Combinatorial Analysis , 1959 .

[12]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[13]  Yaghoub Mahmoudi Wavelet Galerkin method for numerical solution of nonlinear integral equation , 2005, Appl. Math. Comput..

[14]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[15]  L. Gabet,et al.  The theoretical foundation of the Adomian method , 1994 .

[16]  George Adomian,et al.  Transformation of series , 1991 .

[17]  Elçin Yusufoglu,et al.  Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules , 2008, Kybernetes.

[18]  Feyed Ben Zitoun,et al.  A new algorithm for solving nonlinear boundary value problems , 2009, Kybernetes.

[19]  Lionel Gabet Modélisation de la diffusion de médicaments à travers les capillaires et dans les tissus à la suite d'une injection et esquisse d'une théorie décompositionnelle et application aux équations aux dérivées partielles , 1992 .

[20]  V. Lakshmikantham,et al.  Nonlinear Integral Equations in Abstract Spaces , 1996 .

[21]  R. Kanwal,et al.  A Taylor expansion approach for solving integral equations , 1989 .

[22]  Mehmet Sezer,et al.  A method for the approximate solution of the second‐order linear differential equations in terms of Taylor polynomials , 1996 .

[23]  A. J. Jerri Introduction to Integral Equations With Applications , 1985 .

[24]  J. Riordan Derivatives of composite functions , 1946 .

[25]  Eugene M. Klimko,et al.  An algorithm for calculating indices in Fàa di Bruno's formula , 1973 .

[26]  Yves Cherruault,et al.  Short papers: The resolution of non‐linear integral equations of the first kind using the decompositional method of Adomian , 1997 .

[27]  Y Cherruault,et al.  Practical formulae for calculation of Adomian's polynomials and application to the convergence of the decomposition method. , 1994, International journal of bio-medical computing.

[28]  Mehmet Sezer,et al.  Taylor polynomial solutions of Volterra integral equations , 1994 .

[29]  Karim Ivaz,et al.  Numerical solution of nonlinear Volterra-Fredholm integro-differential equations , 2008, Comput. Math. Appl..

[30]  C. Corduneanu,et al.  Integral equations and applications , 1991 .

[31]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[32]  A. Pipkin,et al.  A Course on Integral Equations , 1991 .

[33]  G. Adomian,et al.  A modified decomposition , 1992 .

[34]  R. Temam,et al.  Inertial manifolds and slow manifolds , 1991 .

[35]  B. Some Some recent numerical methods for solving nonlinear Hammerstein integral equations , 1993 .

[36]  Mehmet Sezer,et al.  On the solution of the Riccati equation by the Taylor matrix method , 2006, Appl. Math. Comput..

[37]  Y. Cherruault,et al.  Convergence of Adomian’s method applied to integral equations , 1999 .

[38]  Weiming Wang,et al.  An algorithm for solving the high-order nonlinear Volterra-Fredholm integro-differential equation with mechanization , 2006, Appl. Math. Comput..

[39]  D. M. Hutton,et al.  Modèles et méthodes mathématiques pour les sciences du vivant , 1998 .

[40]  Esquisse d'une théorie décompositionnelle , 1996 .

[41]  D. M. Hutton,et al.  Optimisation - Mèthodes locales et globales , 1999 .

[42]  Y. Mahmoudi Taylor polynomial solution of non-linear Volterra–Fredholm integral equation , 2005, Int. J. Comput. Math..

[43]  Ernst Hairer Analyse II (Calcul Différentiel et Equations Différentielles) , 1999 .

[44]  Khosrow Maleknejad,et al.  Taylor polynomial solution of high-order nonlinear Volterra-Fredholm integro-differential equations , 2003, Appl. Math. Comput..