Regular Languages in NC¹
暂无分享,去创建一个
Howard Straubing | Denis Thérien | David A. Mix Barrington | Kevin J. Compton | D. M. Barrington | Howard Straubing | D. Thérien | K. Compton
[1] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[2] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[3] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[4] R. McNaughton,et al. Counter-Free Automata , 1971 .
[5] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[6] Uzi Vishkin,et al. Constant Depth Reducibility , 1984, SIAM J. Comput..
[7] Howard Straubing. Constant-Depth periodic Circuits , 1991, Int. J. Algebra Comput..
[8] David A. Mix Barrington,et al. Bounded-Width Polynomial-Size Branching Programs Recognize Exactly Those Languages in NC¹ , 1989, J. Comput. Syst. Sci..
[9] Richard J. Lipton,et al. Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.
[10] Howard Straubing,et al. Aperiodic homomorphisms and the concatenation product of recognizable sets , 1979 .
[11] Howard Straubing,et al. Non-Uniform Automata Over Groups , 1990, Inf. Comput..
[12] Richard J. Lipton,et al. Unbounded fan-in circuits and associative functions , 1983, J. Comput. Syst. Sci..
[13] Roman Smolensky,et al. Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.
[14] Michael Sipser,et al. Borel sets and circuit complexity , 1983, STOC.
[15] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[16] Richard J. Lipton,et al. Unbounded Fan-In Circuits and Associative Functions , 1985, J. Comput. Syst. Sci..
[17] Miklós Ajtai,et al. ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..
[18] Bret Tilson,et al. Categories as algebra: An essential ingredient in the theory of monoids , 1987 .
[19] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[20] Neil Immerman,et al. Languages that Capture Complexity Classes , 1987, SIAM J. Comput..
[21] A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .
[22] Howard Straubing,et al. regular Languages Defined with Generalized Quantifiers , 1988, ICALP.
[23] G. Lallement. Semigroups and combinatorial applications , 1979 .
[24] David A. Mix Barrington,et al. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.
[25] Pavel Pudlák,et al. Threshold circuits of bounded depth , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
[26] Michael Sipser,et al. Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).
[27] Neil Immerman,et al. On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..
[28] Howard Straubing,et al. Families of recognizable sets corresponding to certain varieties of finite monoids , 1979 .