Identification of modules in dynamic networks: An empirical Bayes approach

We address the problem of identifying a specific module in a dynamic network, assuming known topology. We express the dynamics by an acyclic network composed of two blocks where the first block accounts for the relation between the known reference signals and the input to the target module, while the second block contains the target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix (kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving a marginal likelihood problem with a novel iterative scheme based on the Expectation-Maximization algorithm. Numerical experiments illustrate the effectiveness of the proposed method.

[1]  Michel Verhaegen,et al.  Output-Error Identification of Large Scale 1D-Spatially Varying Interconnected Systems , 2015, IEEE Transactions on Automatic Control.

[2]  Bilal Gunes,et al.  A variance reduction technique for identification in dynamic networks , 2014 .

[3]  Giulio Bottegal,et al.  A kernel-based approach to Hammerstein system identification , 2014, ArXiv.

[4]  Arne G. Dankers,et al.  Predictor input selection for direct identification in dynamic networks , 2013, 52nd IEEE Conference on Decision and Control.

[5]  Giulio Bottegal,et al.  Robust EM kernel-based methods for linear system identification , 2014, Autom..

[6]  Lennart Ljung,et al.  Closed-loop identification revisited , 1999, Autom..

[7]  Giulio Bottegal,et al.  Blind system identification using kernel-based methods , 2014, ArXiv.

[8]  Arne G. Dankers,et al.  Non-parametric identification in dynamic networks , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[9]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[10]  Xavier Bombois,et al.  Errors-in-variables identification in dynamic networks - Consistency results for an instrumental variable approach , 2015, Autom..

[11]  Bo Wahlberg,et al.  Variance results for identification of cascade systems , 2009, Autom..

[12]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[13]  Xavier Bombois,et al.  Identification of dynamic models in complex networks with prediction error methods - Basic methods for consistent module estimates , 2013, Autom..

[14]  Donatello Materassi,et al.  Topological identification in networks of dynamical systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[15]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[16]  Marion Gilson,et al.  Instrumental variable methods for closed-loop system identification , 2005, Autom..

[17]  B. Wahlberg System identification using Laguerre models , 1991 .

[18]  Aleksandar Haber,et al.  Subspace Identification of Large-Scale Interconnected Systems , 2013, IEEE Transactions on Automatic Control.

[19]  Lennart Ljung,et al.  Kernel methods in system identification, machine learning and function estimation: A survey , 2014, Autom..

[20]  Murti V. Salapaka,et al.  On the Problem of Reconstructing an Unknown Topology via Locality Properties of the Wiener Filter , 2010, IEEE Transactions on Automatic Control.

[21]  Ye Yuan,et al.  Network reconstruction from intrinsic noise: Minimum-phase systems , 2014, 2014 American Control Conference.

[22]  Håkan Hjalmarsson,et al.  System identification of complex and structured systems , 2009, 2009 European Control Conference (ECC).

[23]  Alessandro Chiuso,et al.  A Bayesian approach to sparse dynamic network identification , 2012, Autom..

[24]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .