How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches

[1]  Jian Li,et al.  1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers , 2018 .

[2]  M. Li,et al.  Ridge InGaAs/InP multi-quantum-well selective growth in nanoscale trenches on Si (001) substrate , 2016 .

[3]  H. Yonezu,et al.  Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates , 1998 .

[4]  John E. Bowers,et al.  Low threading dislocation density GaAs growth on on-axis GaP/Si (001) , 2017 .

[5]  Y. Su,et al.  Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask , 2012, Nanotechnology.

[6]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[7]  M. Lee,et al.  GaAsP solar cells on GaP/Si with low threading dislocation density , 2016 .

[8]  P. Hutchinson,et al.  Climb asymmetry in degraded gallium arsenide lasers , 1980 .

[9]  Deliang Wang,et al.  Heteroepitaxial growth of cubic GaN on Si(001) coated with thin flat SiC by plasma-assisted molecular-beam epitaxy , 2000 .

[10]  K. Lau,et al.  Epitaxial growth of GaSb on V-grooved Si (001) substrates with an ultrathin GaAs stress relaxing layer , 2017 .

[11]  K. Yamane,et al.  Doping control of GaAsPN alloys by molecular beam epitaxy for monolithic III-V/Si tandem solar cells , 2017 .

[12]  Alwyn J. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2016 .

[13]  M. Hofmann,et al.  High room-temperature optical gain in Ga(NAsP)/Si heterostructures , 2012 .

[14]  L. Largeau,et al.  Silicon surface preparation for III-V molecular beam epitaxy , 2015 .

[15]  Zetian Mi,et al.  Quantum dot lasers: From promise to high-performance devices , 2009 .

[16]  Mantu K. Hudait,et al.  III–V Multijunction Solar Cell Integration with Silicon: Present Status, Challenges and Future Outlook , 2014 .

[17]  Eugene A. Fitzgerald,et al.  Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation , 2007 .

[18]  M. Lee,et al.  Single-junction GaAsP solar cells grown on SiGe graded buffers on Si , 2013 .

[19]  Kei May Lau,et al.  1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. , 2016, Optics express.

[20]  L. R. Dawson,et al.  The Effect of Dislocations in Ga1 − x Al x As : Si Light‐Emitting Diodes , 1979 .

[21]  B. G. Yacobi,et al.  Extended Defects in Semiconductors: Electronic Properties, Device Effects And Structures , 2014 .

[22]  Y. Horiike,et al.  Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure , 2002 .

[23]  Laurent Cerutti,et al.  Room-temperature continuous-wave operation in the telecom wavelength range of GaSb-based lasers monolithically grown on Si , 2017 .

[24]  J. Narayan,et al.  Mechanism of formation of 60° and 90° misfit dislocations in semiconductor heterostructures , 1991 .

[25]  Wolfgang Stolz,et al.  Heteroepitaxy of GaP on Si: Correlation of morphology, anti-phase-domain structure and MOVPE growth conditions , 2008 .

[26]  E. Fitzgerald,et al.  Epitaxial necking in GaAs grown on pre-pattemed Si substrates , 1991 .

[27]  Dieter Bimberg,et al.  InP on Si(111): Accommodation of lattice mismatch and structural properties , 1994 .

[28]  Takashi Jimbo,et al.  Growth of InxGa1−xAs quantum dots by metal–organic chemical vapor deposition on Si substrates and in GaAs-based lasers , 2001 .

[29]  A. Laracuente,et al.  Step structure and surface morphology of hydrogen-terminated silicon: (0 0 1) to (1 1 4) , 2003 .

[30]  Tatau Nishinaga,et al.  Epitaxial Lateral Overgrowth of GaAs on a Si Substrate , 1989 .

[31]  Dimitri A. Antoniadis,et al.  High quality Ge on Si by epitaxial necking , 2000 .

[32]  C. Jin,et al.  Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[33]  Masami Tachikawa,et al.  InP layer grown on (001) silicon substrate by epitaxial lateral overgrowth , 1995 .

[34]  G. Ng,et al.  (Invited) SiGe and III-V Materials and Devices: New HEMT and LED Elements in 0.18-Micron CMOS Process and Design , 2016 .

[35]  J. Bowers,et al.  1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates , 2017 .

[36]  Robert Langer,et al.  Study towards integration of In0.53Ga0.47As on 300 mm Si for CMOS sub-7 nm node: Development of thin graded InxGa1−xAs buffers on GaAs , 2016 .

[37]  H. Känel,et al.  Integration of InGaP/GaAs/Ge triple‐junction solar cells on deeply patterned silicon substrates , 2016 .

[38]  Z. Zytkiewicz Laterally Overgrown Structures as Substrates for Lattice Mismatched Epitaxy , 2002 .

[39]  A. Wilkinson,et al.  ELECTRON DIFFRACTION BASED TECHNIQUES IN SCANNING ELECTRON MICROSCOPY OF BULK MATERIALS , 1997, 1904.05550.

[40]  David Cavalheiro,et al.  TFET-Based Power Management Circuit for RF Energy Harvesting , 2017, IEEE Journal of the Electron Devices Society.

[41]  Takashi Jimbo,et al.  MOCVD growth of high efficiency current-matched tandem solar cell , 1997 .

[42]  K. Volz,et al.  Pyramidal Structure Formation at the Interface between III/V Semiconductors and Silicon , 2016 .

[43]  Adam S. Bross,et al.  Green Emitting Cubic GaInN/GaN Quantum Well Stripes on Micropatterned Si(001) and Their Strain Analysis , 2016 .

[44]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[45]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[46]  D. Caimi,et al.  Confined Epitaxial Lateral Overgrowth (CELO): A novel concept for scalable integration of CMOS-compatible InGaAs-on-insulator MOSFETs on large-area Si substrates , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[47]  Lok Yi Lee Cubic zincblende gallium nitride for green-wavelength light-emitting diodes , 2017 .

[48]  E. Fitzgerald,et al.  Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates , 2003 .

[49]  Carl Junesand,et al.  Defect reduction in heteroepitaxial InP on Si by epitaxial lateral overgrowth , 2014 .

[50]  R. Reedy,et al.  Lattice-matched GaNPAs-on-silicon tandem solar cells , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[51]  Y. Yeo,et al.  High-Performance InAs Gate-All-Around Nanowire MOSFETs on 300 mm Si Substrates , 2016, IEEE Journal of the Electron Devices Society.

[52]  John E. Ayers,et al.  Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization , 2020 .

[53]  A. Ionescu,et al.  III–V heterostructure tunnel field-effect transistor , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  Y. Bogumilowicz,et al.  Anti phase boundary free GaSb layer grown on 300 mm (001)-Si substrate by metal organic chemical vapor deposition , 2018 .

[55]  P. Ruterana,et al.  Monolithic integration of high electron mobility InAs-based heterostructure on exact (001) Silicon using a GaSb/GaP accommodation layer , 2012 .

[56]  Low temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates , 2006, cond-mat/0703661.

[57]  Kei May Lau,et al.  O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. , 2017, Optics express.

[58]  M. Carroll,et al.  Defect reduction of GaAs/Si epitaxy by aspect ratio trapping , 2008 .

[59]  L. Cerutti,et al.  Electron tomography on III-Sb heterostructures on vicinal Si(001) substrates: Anti-phase boundaries as a sink for threading dislocations , 2017 .

[60]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[61]  E. A. Kraut,et al.  Polar heterojunction interfaces , 1978 .

[62]  Kei May Lau,et al.  Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. , 2017, Optics express.

[63]  M. Carroll,et al.  Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping , 2007 .

[64]  Masahiro Akiyama,et al.  Growth of Single Domain GaAs Layer on (100)-Oriented Si Substrate by MOCVD , 1984 .

[65]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[66]  Bin Tian,et al.  III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate , 2016 .

[67]  Tetsuo Soga,et al.  Room-temperature laser operation of AlGaAs/GaAs double heterostructures fabricated on Si substrates by metalorganic chemical vapor deposition , 1986 .

[68]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[69]  Hadis Morkoç,et al.  Defect reduction with quantum dots in GaN grown on sapphire substrates by molecular beam epitaxy , 2002 .

[70]  Wiebke Witte,et al.  GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration , 2011 .

[71]  A. Vais,et al.  Gate-all-around InGaAs nanowire FETS with peak transconductance of 2200μS/μm at 50nm Lg using a replacement Fin RMG flow , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[72]  D. Huffaker,et al.  High quality AlSb bulk material on Si substrates using a monolithic self-assembled quantum dot nucleation layer , 2005 .

[73]  Herbert Kroemer,et al.  Polar-on-nonpolar epitaxy , 1987 .

[74]  M. Ichikawa,et al.  Nanocontact heteroepitaxy of thin GaSb and AlGaSb films on Si substrates using ultrahigh-density nanodot seeds , 2011, Nanotechnology.

[75]  O. Richard,et al.  Site Selective Integration of III–V Materials on Si for Nanoscale Logic and Photonic Devices , 2012 .

[76]  H. Cerva,et al.  Optical and crystallographic properties of high perfection InP grown on Si(111) , 1994 .

[77]  Heike Riel,et al.  Room-Temperature Lasing from Monolithically Integrated GaAs Microdisks on Silicon , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[78]  Steven A. Ringel,et al.  Control and elimination of nucleation-related defects in GaP/Si(001) heteroepitaxy , 2009 .

[79]  K. Volz,et al.  Direct-band-gap Ga(NAsP)-material system pseudomorphically grown on GaP substrate , 2006 .

[80]  E. Fitzgerald,et al.  GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain , 2018 .

[81]  Eugene A. Fitzgerald,et al.  High-quality metamorphic compositionally graded InGaAs buffers , 2010 .

[82]  Wolfgang Stolz,et al.  Si (001) surface preparation for the antiphase domain free heteroepitaxial growth of GaP on Si substrate , 2008 .

[83]  Henry I. Smith,et al.  High‐quality GaAs on sawtooth‐patterned Si substrates , 1991 .

[84]  E. Fitzgerald,et al.  Comparison of compressive and tensile relaxed composition-graded GaAsP and (Al)InGaP substrates , 2010 .

[85]  Diana L. Huffaker,et al.  Simultaneous interfacial misfit array formation and antiphase domain suppression on miscut silicon substrate , 2008 .

[86]  M. Pessa,et al.  GaAs single‐domain growth on exact (100) Si substrate , 1993 .

[87]  Bin Tian,et al.  Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon. , 2017, Nano letters.

[88]  Kyungmin Chung,et al.  Transmission electron microscopy study of the initial growth stage of GaSb grown on Si (001 ) substrate by molecular beam epitaxy method , 2010 .

[89]  H. Riel,et al.  Mechanisms of template-assisted selective epitaxy of InAs nanowires on Si , 2015 .

[90]  Andrew M. Carlin,et al.  Characterization of Metamorphic GaAsP/Si Materials and Devices for Photovoltaic Applications , 2010, IEEE Transactions on Electron Devices.

[91]  B. G. Yacobi,et al.  Dislocation density reduction through annihilation in lattice-mismatched semiconductors grown by molecular-beam epitaxy , 1988 .

[92]  Chikara Amano,et al.  Efficiency calculations of thin‐film GaAs solar cells on Si substrates , 1985 .

[93]  M. Yamaguchi,et al.  Heteroepitaxial growth and characterization of InP on Si substrates , 1990 .

[94]  T. Nishinaga,et al.  Microchannel epitaxy: an overview , 2002 .

[95]  Lars-Erik Wernersson,et al.  III–V compound semiconductor transistors—from planar to nanowire structures , 2014 .

[96]  Y. Kadota,et al.  7000 h continuous wave operation of multiple quantum well laser on Si at 50 °C , 1997 .

[97]  S. Mahajan,et al.  Defects in semiconductors and their effects on devices , 2000 .

[98]  M. Lee,et al.  Impact of dislocation densities on n+∕p and p+∕n junction GaAs diodes and solar cells on SiGe virtual substrates , 2005 .

[99]  Zeyu Zhang,et al.  Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency , 2018 .

[100]  S. Brückner,et al.  Domain-sensitive in situ observation of layer-by-layer removal at Si(100) in H2 ambient , 2013 .

[101]  E. Fitzgerald,et al.  Preventing phase separation in MOCVD-grown InAlAs compositionally graded buffer on silicon substrate using InGaAs interlayers , 2017 .

[102]  S. Brückner,et al.  Anomalous double-layer step formation on Si(100) in hydrogen process ambient , 2012 .

[103]  Stephen J. Pearton,et al.  Materials and reliability handbook for semiconductor optical and electron devices , 2013 .

[104]  Yu Han,et al.  Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates , 2016 .

[105]  D. Reuter,et al.  Optical Properties of Cubic GaN Quantum Dots Grown by Molecular Beam Epitaxy , 2018 .

[106]  Diana L. Huffaker,et al.  Room-temperature optically-pumped GaSb quantum well based VCSEL monolithically grown on Si (100) substrate , 2005 .

[107]  John E. Bowers,et al.  Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si , 2018 .

[108]  S. Pearton,et al.  Antiphase domains in GaAs grown by metalorganic chemical vapor deposition on silicon‐on‐insulator , 1988 .

[109]  Geert Morthier,et al.  Novel Light Source Integration Approaches for Silicon Photonics , 2017 .

[110]  X. Bao,et al.  Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices , 2014 .

[111]  H. Nishino,et al.  Damage‐free selective etching of Si native oxides using NH3/NF3 and SF6/H2O down‐flow etching , 1993 .

[112]  A Yariv,et al.  Continuous-wave operation of extremely low-threshold GaAs/AlGaAs broad-area injection lasers on (100) Si substrates at room temperature. , 1987, Optics letters.

[113]  Zeyu Zhang,et al.  1.3 μm Submilliamp Threshold Quantum Dot Micro-lasers on Si , 2017 .

[114]  Gang Wang,et al.  A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100) , 2009 .

[115]  Tersoff,et al.  Phase diagram of vicinal Si(001) surfaces. , 1991, Physical review letters.

[116]  K. Lau,et al.  30-nm Inverted $\hbox{In}_{0.53}\hbox{Ga}_{0.47} \hbox{As}$ MOSHEMTs on Si Substrate Grown by MOCVD With Regrown Source/Drain , 2012, IEEE Electron Device Letters.

[117]  John E. Bowers,et al.  Improvements in epitaxial lateral overgrowth of InP by MOVPE , 2014 .

[118]  R. G. Waters,et al.  Diode laser degradation mechanisms: A review , 1991 .

[119]  Heike Riel,et al.  High-Mobility GaSb Nanostructures Cointegrated with InAs on Si. , 2017, ACS nano.

[120]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[121]  John E. Ayers,et al.  Post-growth thermal annealing of GaAs on Si(001) grown by organometallic vapor phase epitaxy , 1992 .

[122]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[123]  Sebastian Lourdudoss,et al.  Heteroepitaxy and selective area heteroepitaxy for silicon photonics , 2012 .

[124]  Yu Han,et al.  InGaAs/InP quantum wires grown on silicon with adjustable emission wavelength at telecom bands , 2018, Nanotechnology.

[125]  Robert Langer,et al.  (Invited) Integration of III/V Hetero-Structures By Selective Area Growth on Si for Nano- and Optoelectronics , 2016 .

[126]  John E. Bowers,et al.  Perspective: The future of quantum dot photonic integrated circuits , 2018 .

[127]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[128]  H. Gottschalk,et al.  Stacking fault energy and ionicity of cubic III–V compounds , 1978 .

[129]  Dimitri A. Antoniadis,et al.  Nanometer-Scale III-V MOSFETs , 2016, IEEE Journal of the Electron Devices Society.

[130]  B. Wang,et al.  Control wafer bow of InGaP on 200 mm Si by strain engineering , 2017 .

[131]  Naokatsu Yamamoto,et al.  Heteroepitaxial growth of GaSb on Si(0 0 1) substrates , 2004 .

[132]  Eric Tournié,et al.  Metamorphic III-V semiconductor lasers grown on silicon , 2016 .

[133]  C. Merckling,et al.  Scalability of InGaAs gate-all-around FET integrated on 300mm Si platform: Demonstration of channel width down to 7nm and Lg down to 36nm , 2016, 2016 IEEE Symposium on VLSI Technology.

[134]  H. Cerva,et al.  Defect reduction in GaAs and InP grown on planar Si(111) and on patterned Si(001) substrates , 1994 .

[135]  Ron Kaspi,et al.  Nucleation of misfit and threading dislocations during epitaxial growth of GaSb on GaAs(001) substrates , 1997 .

[136]  X. Bao,et al.  Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001) , 2016 .

[137]  Heike Riel,et al.  Vertical III-V nanowire device integration on Si(100). , 2014, Nano letters.

[138]  J. Bowers,et al.  Large-Area Direct Hetero-Epitaxial Growth of 1550-nm InGaAsP Multi-Quantum-Well Structures on Patterned Exact-Oriented (001) Silicon Substrates by Metal Organic Chemical Vapor Deposition , 2018, Journal of Electronic Materials.

[139]  R. Kamaladasa Basic Principles and Application of Electron Channeling in a Scanning Electron Microscope for Dislocation Analysis , 2010 .

[140]  M. Umeno,et al.  Influences of Dark Line Defects on Characteristics of AlGaAs/GaAs Quantum Well Lasers Grown on Si Substrates , 1995 .

[141]  Pallab Bhattacharya,et al.  High-Performance Quantum Dot Lasers and Integrated Optoelectronics on Si , 2009, Proceedings of the IEEE.

[142]  Y. Horikoshi,et al.  Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy , 1991 .

[143]  Kei May Lau,et al.  Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon , 2015 .

[144]  Heike Riel,et al.  Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy , 2017 .

[145]  P. Ruterana,et al.  Strain relief and growth optimization of GaSb on GaP by molecular beam epitaxy , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[146]  Heike Riel,et al.  Vertical InAs-Si Gate-All-Around Tunnel FETs Integrated on Si Using Selective Epitaxy in Nanotube Templates , 2015, IEEE Journal of the Electron Devices Society.

[147]  Heike Riel,et al.  Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si , 2015 .

[148]  D. Cutaia,et al.  Complementary III–V heterojunction lateral NW Tunnel FET technology on Si , 2016, 2016 IEEE Symposium on VLSI Technology.

[149]  Zhengshan J. Yu,et al.  15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates , 2017 .

[150]  Xiaomin Ren,et al.  Coalescence of GaAs on (001) Si nano-trenches based on three-stage epitaxial lateral overgrowth , 2015 .

[151]  N. Collaert,et al.  Non-destructive characterization of extended crystalline defects in confined semiconductor device structures. , 2018, Nanoscale.

[152]  Serge Oktyabrsky,et al.  Epitaxial growth of GaSb and InAs fins on 300 mm Si (001) by aspect ratio trapping , 2016 .

[153]  Diana L. Huffaker,et al.  Strain relief by periodic misfit arrays for low defect density GaSb on GaAs , 2006 .

[154]  Kei May Lau,et al.  Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics , 2017 .

[155]  M. Carroll,et al.  Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping , 2007 .

[156]  Taizo Masuda,et al.  InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001) , 2014 .

[157]  M. Yamaguchi,et al.  Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .

[158]  John E. Bowers,et al.  Study of planar defect filtering in InP grown on Si by epitaxial lateral overgrowth , 2013 .

[159]  J. Dow,et al.  Role of dangling bonds and antisite defects in rapid and gradual III‐V laser degradation , 1982 .

[160]  Eric Tournié,et al.  Continuous-wave operation above room temperature of GaSb-based laser diodes grown on Si , 2011 .

[161]  Christopher J. K. Richardson,et al.  Metamorphic epitaxial materials , 2016 .

[162]  M. Yamaguchi,et al.  Effect of dislocations on the efficiency of thin-film GaAs solar cells on Si substrates , 1986 .

[163]  Y. Su,et al.  Nano epitaxial growth of GaAs on Si (001) , 2011 .

[164]  P. Ruterana,et al.  Investigation of the anisotropic strain relaxation in GaSb islands on GaP , 2011 .

[165]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.

[166]  C. Dwyer,et al.  Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy , 2013 .

[167]  Toward the III–V/Si co-integration by controlling the biatomic steps on hydrogenated Si(001) , 2016, 1701.08078.

[168]  T. Drummond,et al.  Dislocation filtering in semiconductor superlattices with lattice-matched and lattice-mismatched layer materials , 1986 .

[169]  S. Takeuchi,et al.  Stacking-fault energy of II–VI compounds , 1985 .

[170]  Marek Skowronski,et al.  Dislocation Density Reduction in GaSb Films Grown on GaAs Substrates by Molecular Beam Epitaxy , 1997 .

[171]  Shuang Zhang,et al.  Nanoheteroepitaxy for the integration of highly mismatched semiconductor materials , 2002 .

[172]  H. Riel,et al.  Monolithic integration of multiple III-V semiconductors on Si for MOSFETs and TFETs , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[173]  GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction , 2015 .

[174]  Ihm,et al.  Biatomic steps on (001) silicon surfaces. , 1986, Physical review letters.

[175]  A. Hikavyy,et al.  Review—Device Assessment of Electrically Active Defects in High-Mobility Materials , 2016 .

[176]  S. Ringel,et al.  GaAs0.75P0.25/Si Dual-Junction Solar Cells Grown by MBE and MOCVD , 2016, IEEE Journal of Photovoltaics.

[177]  F. Dimroth,et al.  Metamorphic epitaxy for multijunction solar cells , 2016 .

[178]  E. Fitzgerald,et al.  Metamorphic transistors: Building blocks for hetero-integrated circuits , 2016 .

[179]  Kenji Araki,et al.  Potential and Activities of III-V/Si Tandem Solar Cells , 2015 .

[180]  Heike Riel,et al.  Selective area growth of III–V nanowires and their heterostructures on silicon in a nanotube template: towards monolithic integration of nano-devices , 2013, Nanotechnology.

[181]  R. Schaller,et al.  High Internal Quantum Efficiency Ultraviolet Emission from Phase-Transition Cubic GaN Integrated on Nanopatterned Si(100). , 2018, ACS photonics.

[182]  Joris Van Campenhout,et al.  Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer , 2017 .

[183]  Sangam Chatterjee,et al.  Laser operation of Ga(NAsP) lattice-matched to (001) silicon substrate , 2011 .

[184]  K. Lau,et al.  Material and Device Characteristics of Metamorphic ${\rm In}_{0.53}{\rm Ga}_{0.47}{\rm As}$ MOSHEMTs Grown on GaAs and Si Substrates by MOCVD , 2013, IEEE Transactions on Electron Devices.

[185]  K. Volz,et al.  Influence of crystal polarity on crystal defects in GaP grown on exact Si (001) , 2011 .

[186]  Kei May Lau,et al.  Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si , 2017 .

[187]  M. Yamaguchi Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices , 1991 .

[188]  J. Gerard,et al.  Structural study of InAs quantum boxes grown by molecular beam epitaxy on a (001) GaAs-on-Si substrate , 1997 .

[189]  Christopher J. Kiely,et al.  General characteristics of crack arrays in epilayers grown under tensile strain , 2000 .

[190]  W. Guo,et al.  Anisotropic relaxation behavior of InGaAs/GaAs selectively grown in narrow trenches on (001) Si substrates , 2017 .