Classical and Quantum Error-Correction Coding in Genetics

The subject of this chapter is the use of classical/quantum information theory and coding in genetics and evolution. The chapter starts with the description of using the concepts from both classical and quantum information theories to describe the evolution of biological channel capacity through generations. In order to do so, several classical and quantum biological channel models are employed including the Markovian classical and Markovian-like quantum model, hybrid quantum-classical model, multilevel symmetric channel model, and Kimura model-based Markovian process. In order to describe the reliable long-time storage of genetic information in DNA, the use of unequal error protection (UEP) coding is studied. Several classes of error-correction codes suitable for UEP on a cellular level are described including nested coding, multilevel coding (MLC), rate-adaptive coding, and generalized LDPC coding. The use of concepts of constrained coding to describe the genetic information flow from DNA to proteins is also described as well as joint-constrained and error-correction coding. After that, the use of quantum error-correction concepts to deal with environmental errors including canonical quantum error-correction and stabilizer codes is briefly described. One particular class of stabilizer codes, known as topological codes, is then described that might be relevant to biological processes as they only involve the local qubits in encoding process. Another relevant class of codes, the subsystem codes, is then described. The key idea behind subsystem codes is to decompose the quantum code as the tensor product of two subsystems, exon subsystem A and intron subsystem B, and we are concerned with correcting errors only on the exon subsystem. Finally, we describe the use of nonbinary quantum stabilizer codes to deal with nucleobase substitution errors, both random and burst errors. We also briefly discuss the possible use of both classical and quantum error-correction concepts to improve tolerance to tumor and cancer introducing errors.

[1]  J. Samuel,et al.  DNA Watermarking of Infectious Agents: Progress and Prospects , 2010, PLoS pathogens.

[2]  B. Vasic,et al.  Multilevel coding in M-ary DPSK/differential QAM high-speed optical transmission with direct detection , 2006, Journal of Lightwave Technology.

[3]  D. Koruga DNA as classical and quantum information system: Implication to gene expression in normal and cancer cells , 2005 .

[4]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[5]  Stephen W. Byers,et al.  New Biology for Engineers and Computer Scientists , 2003 .

[6]  Hubert P. Yockey,et al.  Information theory, evolution, and the origin of life: Index , 2005 .

[7]  David Poulin,et al.  A renormalization group decoding algorithm for topological quantum codes , 2010, 2010 IEEE Information Theory Workshop.

[8]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[9]  I. Djordjevic,et al.  Constrained coding techniques for the suppression of intrachannel nonlinear effects in high-speed optical transmission , 2006, Journal of Lightwave Technology.

[10]  Zaher Dawy,et al.  On genomic coding theory , 2007, Eur. Trans. Telecommun..

[11]  H. Bombin,et al.  Topological subsystem codes , 2009, 0908.4246.

[12]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[13]  J P Cox,et al.  Long-term data storage in DNA. , 2001, Trends in biotechnology.

[14]  J. Kahn,et al.  Rate-adaptive modulation and low-density parity-check coding for optical fiber transmission systems , 2012, IEEE/OSA Journal of Optical Communications and Networking.

[15]  T. Gingeras,et al.  Genome-wide transcription and the implications for genomic organization , 2007, Nature Reviews Genetics.

[16]  H. P. Yockey,et al.  An application of information theory to the Central Dogma and the Sequence Hypothesis. , 1974, Journal of theoretical biology.

[17]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[18]  Elizabeth A. Shephard,et al.  Cell Biology: A Short Course , 2003 .

[19]  Vasily Ogryzko,et al.  Biologically inspired path to quantum computer , 2014, Other Conferences.

[20]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[21]  Hubert P. Yockey,et al.  Information theory, evolution and the origin of life , 2005, Inf. Sci..

[22]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[23]  A. Klappenecker,et al.  On subsystem codes beating the quantum Hamming or Singleton bound , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  D. Forsdyke,et al.  Are introns in-series error-detecting sequences? , 1981, Journal of theoretical biology.

[25]  Pradeep Kiran Sarvepalli,et al.  Nonbinary quantum Reed-Muller codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[26]  Ivan B Djordjevic,et al.  Multiple component codes based generalized LDPC codes for high-speed optical transport. , 2014, Optics express.

[27]  I. Mian,et al.  Communication theory and multicellular biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[28]  G. Battail Information Theory and Error-Correcting Codes In Genetics and Biological Evolution , 2008 .

[29]  Kevin Y. Yip,et al.  Classification of human genomic regions based on experimentally determined binding sites of more than 100 transcription-related factors , 2012, Genome Biology.

[30]  Catherine Taylor Clelland,et al.  Hiding messages in DNA microdots , 1999, Nature.

[31]  Robert N Grass,et al.  Robust chemical preservation of digital information on DNA in silica with error-correcting codes. , 2015, Angewandte Chemie.

[32]  Forsdyke Conservation of Stem-Loop Potential in Introns of Snake Venom Phospholipase A2 Genes: An Application of FORS-D Analysis , 1995 .

[33]  S. Hameroff,et al.  Quantum computation in brain microtubules: decoherence and biological feasibility. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Ivan B. Djordjevic,et al.  Advanced Optical Communication Systems and Networks , 2013 .

[35]  Amitabh Banerjee,et al.  Message Encoding in Nucleotides , 2011 .

[36]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[37]  Ivan B. Djordjevic,et al.  Quantum Biological Channel Modeling and Capacity Calculation , 2012, Life.

[38]  Pak Chung Wong,et al.  Organic data memory using the DNA approach , 2003, CACM.

[39]  C Bancroft,et al.  Long-Term Storage of Information in DNA , 2001, Science.

[40]  Pradeep Kiran Sarvepalli,et al.  Quantum stabilizer codes and beyond , 2008, 0810.2574.

[41]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[42]  J. H. Kleinschmidt,et al.  DNA sequences generated by BCH codes over GF(4) , 2010 .

[43]  Pradeep Sarvepalli,et al.  Topological color codes over higher alphabet , 2010, 2010 IEEE Information Theory Workshop.

[44]  Ting Wang,et al.  Terabit/s Nyquist Superchannels in High Capacity Fiber Field Trials Using DP-16QAM and DP-8QAM Modulation Formats , 2014, Journal of Lightwave Technology.

[45]  Jon-Lark Kim,et al.  Nonbinary quantum error-correcting codes from algebraic curves , 2008, Discret. Math..

[46]  Andy Purvis,et al.  Estimating the Transition/Transversion Ratio from Independent Pairwise Comparisons with an Assumed Phylogeny , 1997, Journal of Molecular Evolution.

[47]  R. Voss,et al.  Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. , 1992, Physical review letters.

[48]  Frank Gaitan Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .

[49]  Microtubules as a Quantum Hopfield Network , 2006 .

[50]  Ivan B. Djordjevic,et al.  On the Irregular Nonbinary QC-LDPC-Coded Hybrid Multidimensional OSCD-Modulation Enabling Beyond 100 Tb/s Optical Transport , 2013, Journal of Lightwave Technology.

[51]  Marcello Barbieri,et al.  Code Biology – A New Science of Life , 2012, Biosemiotics.

[52]  Martin Suchara,et al.  Constructions and noise threshold of topological subsystem codes , 2010, Journal of Physics A: Mathematical and Theoretical.

[53]  Gérard Battail Barbieri’s Organic Codes Enable Error Correction of Genomes , 2014, Biosemiotics.

[54]  Jessica M. Young,et al.  Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis , 2005, Nature.

[55]  Marcello Barbieri,et al.  The Organic Codes , 2002 .

[56]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[57]  Sala Abdelhamid Awad Aly Ahmed Quantum error control codes , 2008 .

[58]  Emanuel M. Popovici,et al.  Subfield-subcodes of Generalized Toric codes , 2010, 2010 IEEE International Symposium on Information Theory.

[59]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[60]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[61]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[62]  Gérard Battail,et al.  Does information theory explain biological evolution , 1997 .

[63]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[64]  Reginaldo Palazzo Júnior,et al.  DNA sequences generated by ℤ4-linear codes , 2010, 2010 IEEE International Symposium on Information Theory.

[65]  D. Koruga Classical and Quantum Information Processing in DNA-Protein Coding , 2012 .

[66]  H. Bombin,et al.  Topological order with a twist: Ising anyons from an Abelian model. , 2010, Physical review letters.

[67]  Andreas Klappenecker,et al.  Subsystem code constructions , 2007, 2008 IEEE International Symposium on Information Theory.

[68]  Dominik Heider,et al.  DNA-based watermarks using the DNA-Crypt algorithm , 2007, BMC Bioinformatics.

[69]  Dominik Heider,et al.  DNA watermarks in non-coding regulatory sequences , 2009, BMC Research Notes.

[70]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[71]  S. Bravyi Subsystem codes with spatially local generators , 2010, 1008.1029.