Harris hawks optimization: Algorithm and applications

Abstract In this paper, a novel population-based, nature-inspired optimization paradigm is proposed, which is called Harris Hawks Optimizer (HHO). The main inspiration of HHO is the cooperative behavior and chasing style of Harris’ hawks in nature called surprise pounce. In this intelligent strategy, several hawks cooperatively pounce a prey from different directions in an attempt to surprise it. Harris hawks can reveal a variety of chasing patterns based on the dynamic nature of scenarios and escaping patterns of the prey. This work mathematically mimics such dynamic patterns and behaviors to develop an optimization algorithm. The effectiveness of the proposed HHO optimizer is checked, through a comparison with other nature-inspired techniques, on 29 benchmark problems and several real-world engineering problems. The statistical results and comparisons show that the HHO algorithm provides very promising and occasionally competitive results compared to well-established metaheuristic techniques. Source codes of HHO are publicly available at http://www.alimirjalili.com/HHO.html and http://www.evo-ml.com/2019/03/02/hho .

[1]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[2]  Hossam Faris,et al.  Asynchronous accelerating multi-leader salp chains for feature selection , 2018, Appl. Soft Comput..

[3]  Ardeshir Bahreininejad,et al.  Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems , 2012 .

[4]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[7]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.

[8]  Hamid Salimi,et al.  Stochastic Fractal Search: A powerful metaheuristic algorithm , 2015, Knowl. Based Syst..

[9]  Nicolas E. Humphries,et al.  Environmental context explains Lévy and Brownian movement patterns of marine predators , 2010, Nature.

[10]  Seyed Mohammad Mirjalili,et al.  Multi-Verse Optimizer: a nature-inspired algorithm for global optimization , 2015, Neural Computing and Applications.

[11]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[12]  Hossam Faris,et al.  An enhanced associative learning-based exploratory whale optimizer for global optimization , 2019, Neural Computing and Applications.

[13]  Leandro dos Santos Coelho,et al.  Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems , 2010, Expert Syst. Appl..

[14]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[15]  Ling Wang,et al.  An effective differential evolution with level comparison for constrained engineering design , 2010 .

[16]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[17]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[18]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[19]  L. Lefebvre,et al.  Big brains, enhanced cognition, and response of birds to novel environments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Hossam Faris,et al.  An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems , 2018, Knowl. Based Syst..

[21]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[23]  S. Salcedo-Sanz Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures , 2016 .

[24]  Wenjian Luo,et al.  Differential evolution with dynamic stochastic selection for constrained optimization , 2008, Inf. Sci..

[25]  R. Venkata Rao,et al.  Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems , 2011, Comput. Aided Des..

[26]  Jung-Fa Tsai,et al.  Global optimization of nonlinear fractional programming problems in engineering design , 2005 .

[27]  Ardeshir Bahreininejad,et al.  Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems , 2013, Appl. Soft Comput..

[28]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[29]  Amir Hossein Gandomi,et al.  Bat algorithm for constrained optimization tasks , 2012, Neural Computing and Applications.

[30]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[31]  Seyed Mohammad Mirjalili,et al.  Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm , 2015, Knowl. Based Syst..

[32]  Johann Dréo,et al.  Metaheuristics for Hard Optimization: Methods and Case Studies , 2005 .

[33]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[34]  Ashok Dhondu Belegundu,et al.  A Study of Mathematical Programming Methods for Structural Optimization , 1985 .

[35]  Jasbir S. Arora,et al.  Introduction to Optimum Design , 1988 .

[36]  Michael F. Shlesinger,et al.  Levy fights: variations on a theme , 1989 .

[37]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[38]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[39]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[40]  Hossam Faris,et al.  Binary dragonfly optimization for feature selection using time-varying transfer functions , 2018, Knowl. Based Syst..

[41]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[42]  Yong Wang,et al.  Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization , 2010, Appl. Soft Comput..

[43]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[44]  C. A. Coello Coello,et al.  Multiple trial vectors in differential evolution for engineering design , 2007 .

[45]  Hossam Faris,et al.  Evolutionary Population Dynamics and Grasshopper Optimization approaches for feature selection problems , 2017, Knowl. Based Syst..

[46]  Adil Baykasoglu,et al.  Evolutionary and population-based methods versus constructive search strategies in dynamic combinatorial optimization , 2017, Inf. Sci..

[47]  Huiling Chen,et al.  Chaos Enhanced Bacterial Foraging Optimization for Global Optimization , 2018, IEEE Access.

[48]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[49]  Wenyin Gong,et al.  Engineering optimization by means of an improved constrained differential evolution , 2014 .

[50]  Louis Lefebvre,et al.  Distraction Sneakers Decrease the Expected Level of Aggression within Groups: A Game‐Theoretic Model , 2004, The American Naturalist.

[51]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[52]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[53]  N. Siddique,et al.  Central Force Optimization , 2017 .

[54]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[55]  Ali Kaveh,et al.  Water Evaporation Optimization , 2016 .

[56]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[57]  Kalyanmoy Deb,et al.  Optimal design of a welded beam via genetic algorithms , 1991 .

[58]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[59]  Xuehua Zhao,et al.  An improved grasshopper optimization algorithm with application to financial stress prediction , 2018, Applied Mathematical Modelling.

[60]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[61]  R. Venkata Rao,et al.  Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems , 2012, Inf. Sci..

[62]  Ling Wang,et al.  A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization , 2007, Appl. Math. Comput..

[63]  H. Stanley,et al.  Lévy flights in random searches , 2000 .

[64]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[65]  Hossam Faris,et al.  An intelligent system for spam detection and identification of the most relevant features based on evolutionary Random Weight Networks , 2019, Inf. Fusion.

[66]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[67]  J. Bednarz,et al.  Cooperative Hunting Harris' Hawks (Parabuteo unicinctus) , 1988, Science.

[68]  Witold Pedrycz,et al.  A variable reduction strategy for evolutionary algorithms handling equality constraints , 2015, Appl. Soft Comput..

[69]  Vimal Savsani,et al.  Passing vehicle search (PVS): A novel metaheuristic algorithm , 2016 .

[70]  A. Kaveh,et al.  A novel meta-heuristic optimization algorithm: Thermal exchange optimization , 2017, Adv. Eng. Softw..

[71]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[72]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[73]  Hossam Faris,et al.  Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems , 2017, Adv. Eng. Softw..

[74]  A. Gandomi,et al.  Mixed variable structural optimization using Firefly Algorithm , 2011 .

[75]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[76]  A. Rezaee Jordehi,et al.  An efficient chaotic water cycle algorithm for optimization tasks , 2015, Neural Computing and Applications.

[77]  Ling Wang,et al.  An effective co-evolutionary particle swarm optimization for constrained engineering design problems , 2007, Eng. Appl. Artif. Intell..

[78]  Hossam Faris,et al.  An efficient hybrid multilayer perceptron neural network with grasshopper optimization , 2018, Soft Computing.

[79]  Hui Huang,et al.  Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses , 2017, Neurocomputing.

[80]  Tapabrata Ray,et al.  ENGINEERING DESIGN OPTIMIZATION USING A SWARM WITH AN INTELLIGENT INFORMATION SHARING AMONG INDIVIDUALS , 2001 .

[81]  Dayou Liu,et al.  Evolving support vector machines using fruit fly optimization for medical data classification , 2016, Knowl. Based Syst..

[82]  Arild O. Gautestad,et al.  Complex animal distribution and abundance from memory-dependent kinetics , 2006 .

[83]  Nicolas E. Humphries,et al.  Scaling laws of marine predator search behaviour , 2008, Nature.

[84]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[85]  L. Lefebvre,et al.  Feeding innovations and forebrain size in birds , 1997, Animal Behaviour.

[86]  John R. Koza,et al.  Genetic Programming II , 1992 .

[87]  Anand Jayant Kulkarni,et al.  Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology , 2018, Future Gener. Comput. Syst..

[88]  Konstantinos G. Margaritis,et al.  On benchmarking functions for genetic algorithms , 2001, Int. J. Comput. Math..

[89]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[90]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[91]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[92]  Guohua Wu,et al.  Across neighborhood search for numerical optimization , 2014, Inf. Sci..

[93]  K. M. Ragsdell,et al.  Optimal Design of a Class of Welded Structures Using Geometric Programming , 1976 .

[94]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[95]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[96]  Rajiv Tiwari,et al.  Multi-objective design optimisation of rolling bearings using genetic algorithms , 2007 .

[97]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[98]  Marco Montemurro,et al.  The Automatic Dynamic Penalisation method (ADP) for handling constraints with genetic algorithms , 2013 .