A Taxonomy of 3D Occluded Objects Recognition Techniques

The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

[1]  Hayit Greenspan,et al.  Content-Based Image Retrieval in Radiology: Current Status and Future Directions , 2010, Journal of Digital Imaging.

[2]  Geok Soon Hong,et al.  2D occluded object recognition using wavelets , 2004, The Fourth International Conference onComputer and Information Technology, 2004. CIT '04..

[3]  Mohamed-Jalal Fadili,et al.  Curvelets and Ridgelets , 2009, Encyclopedia of Complexity and Systems Science.

[4]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[5]  Mandyam D. Srinath,et al.  Partial Shape Classification Using Contour Matching in Distance Transformation , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Emmanuel J. Candès,et al.  The curvelet transform for image denoising , 2002, IEEE Trans. Image Process..

[7]  Emilio L. Zapata,et al.  An efficient 2D deformable objects detection and location algorithm , 2003, Pattern Recognit..

[8]  Bir Bhanu,et al.  Recognition of occluded objects: A cluster-structure algorithm , 1987, Pattern Recognit..

[9]  Matthew B. Blaschko,et al.  Combining Local and Global Image Features for Object Class Recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[10]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[11]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[12]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..

[13]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors based on 3D Objects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[14]  Usama Sayed,et al.  Image Object Extraction Based on Curvelet Transform , 2013 .

[15]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[16]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[17]  Md. Monirul Islam,et al.  Rotation Invariant Curvelet Features for Region Based Image Retrieval , 2011, International Journal of Computer Vision.

[18]  Dzulkifli Mohamad,et al.  Discriminative Features Mining for Offline Handwritten Signature Verification , 2014 .

[19]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[20]  Kah Bin Lim,et al.  Recognition of occluded objects by feature interactions , 2010, 2010 IEEE Conference on Robotics, Automation and Mechatronics.

[21]  Chaur-Chin Chen Improved moment invariants for shape discrimination , 1993, Pattern Recognit..

[22]  Qing Wang,et al.  Partially occluded object recognition , 2011, Int. J. Comput. Appl. Technol..

[23]  Chaur-Chin Chen,et al.  Improved moment invariants for shape discrimination , 1993, Optics & Photonics.

[24]  Fang-Hsuan Cheng,et al.  Fast algorithm for point pattern matching: Invariant to translations, rotations and scale changes , 1997, Pattern Recognit..

[25]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J. Starck,et al.  Curvelet analysis of asteroseismic data I: Method description and application to simulated sun-like stars , 2006, astro-ph/0604092.

[27]  G. Healey,et al.  Global color constancy: recognition of objects by use of illumination-invariant properties of color distributions , 1994 .

[28]  Md. Monirul Islam,et al.  Content based image retrieval using curvelet transform , 2008, 2008 IEEE 10th Workshop on Multimedia Signal Processing.

[29]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[30]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[31]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[32]  Jie Chen,et al.  Affine curve moment invariants for shape recognition , 1997, Pattern Recognit..

[33]  Michael A. Greenspan Geometric Probing of Dense Range Data , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[35]  Yehezkel Lamdan,et al.  Affine invariant model-based object recognition , 1990, IEEE Trans. Robotics Autom..

[36]  NeyHermann,et al.  Features for image retrieval , 2008 .

[37]  Amjad Rehman,et al.  Improved quadtree image segmentation approach to region information , 2014 .

[38]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[39]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  K. Hemachandran,et al.  Performance analysis of Color Spaces in Image Retrieval , 2011 .

[41]  Dzulkifli Mohamad,et al.  Recognition of Partially Occluded Objects Based on the Three Different Color Spaces (RGB, YCbCr, HSV) , 2015 .

[42]  Pong C. Yuen,et al.  Classification of partially occluded objects using 3-point matching and distance transformation , 1994, Pattern Recognit..

[43]  Aly A. Farag,et al.  CSIFT: A SIFT Descriptor with Color Invariant Characteristics , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[44]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[45]  Min-Hong Han,et al.  The use of maximum curvature points for the recognition of partially occluded objects , 1990, Pattern Recognit..

[46]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[47]  Brian V. Funt,et al.  Color Angular Indexing , 1996, ECCV.

[48]  Ramesh C. Jain,et al.  Production model based digital video segmentation , 1995, Multimedia Tools and Applications.

[49]  Amjad Rehman,et al.  Features extraction for soccer video semantic analysis: current achievements and remaining issues , 2012, Artificial Intelligence Review.

[50]  Rehman,et al.  Video motion perception using optimized Gabor filter , 2011 .

[51]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  James H. McIntosh,et al.  Matching straight lines , 1988, Comput. Vis. Graph. Image Process..

[53]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[54]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[55]  J. Starck,et al.  Astronomical Image and Data Analysis (Astronomy and Astrophysics Library) , 2006 .

[56]  Rafael C. González,et al.  Digital image processing using MATLAB , 2006 .

[57]  Mohamed A. Ismail,et al.  Matching Occluded Objects Invariant to Rotations, Translations, Reflections, and Scale Changes , 2003, SCIA.

[58]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  A. Gruen,et al.  Least squares 3D surface and curve matching , 2005 .

[61]  Edward J. Delp,et al.  Partial Shape Recognition: A Landmark-Based Approach , 1990, IEEE Trans. Pattern Anal. Mach. Intell..