Free Fiber Level Drives Resilience and Hybrid Vigor in Energy Cane

Sugarcane is grown in the tropics and subtropics as a feedstock for sugar production. Brazil leaded the way to also produce liquid combustible (ethanol) from its sugary juice, one striking model of a renewable energy. Nowadays, there is a worldwide claim that the field productivity of this crop is stagnant. This issue is discussed in this book, bringing the idea that the yield plateauing is driven by the genetical constitution prevailing in all hybrid cultivars. The claim is that the paradigmatic requirement of the industry for a feedstock with high sugar content, but with low in fiber, strictly determines that constitution. Low fiber and high sugary juice are traits inherited from Saccharum officinarum, an ancestral with low resilience, whereas the counterpart ancestral S. spontaneum transmits fiber content and high resilience. Energy cane, having higher chromosome proportion of the second genitor, is a type with higher resilience and high hybrid vigor, able to produce at least two-fold the yield of conventional sugar cane. Therefore, the energy cane production and transformation can be considered a disruptive technology.

[1]  David R. Montgomery,et al.  Dirt: The Erosion of Civilizations , 2007 .

[2]  David Ellis,et al.  Biofuels in Brazil: an overview. , 2007 .

[3]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. L. Burnquist,et al.  EVALUATING SUGARCANE R&D PERFORMANCE: EVALUATION OF THREE BREEDING PROGRAMS , 2010 .

[5]  William O.S. Doherty,et al.  The Sugarcane Biorefinery: Energy Crops and Processes for the Production of Liquid Fuels and Renewable Commodity Chemicals , 2005 .

[6]  D. Coleman Soil Biology and Organisms , 2017 .

[7]  Jonathan P. Lynch,et al.  Roots of the Second Green Revolution , 2007 .

[8]  S. J. Hall Soils and the Future of Food , 2014 .

[9]  Sidney C. Bosworth Perennial grass biomass production and utilization , 2015 .

[10]  D. M. Hogarth,et al.  Monoculture yield decline - fact not fiction. , 2001 .

[11]  P. Lakshmanan,et al.  Stress physiology: abiotic stresses , 2013 .

[12]  J. Pereira,et al.  Understanding plant responses to drought - from genes to the whole plant. , 2003, Functional plant biology : FPB.

[13]  L. Mommer,et al.  Going underground: root traits as drivers of ecosystem processes. , 2014, Trends in ecology & evolution.

[14]  G. Zacchi,et al.  Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process , 2012, Biotechnology for Biofuels.

[15]  G. Conway,et al.  One Billion Hungry: Can We Feed the World? , 2012 .

[16]  W. Bowman,et al.  A temporal approach to linking aboveground and belowground ecology. , 2005, Trends in ecology & evolution.

[17]  Alexandre Strapasson,et al.  The limits of bioenergy : a complex systems approach to land use dynamics and constraints , 2014 .

[18]  F. Botha,et al.  Biomass and Bioenergy , 2013 .

[19]  R. Lal,et al.  Bioethanol Potentials and Life-Cycle Assessments of Biofuel Feedstocks , 2012 .

[20]  G. Welbaum Water Relations and Cell Expansion of Storage Tissue , 2013 .

[21]  Michael D. Cramer,et al.  Source and Sink Physiology , 2013 .

[22]  Abraham Singels,et al.  Predicting Climate Change Impacts on Sugarcane Production at Sites in Australia, Brazil and South Africa Using the Canegro Model , 2014, Sugar Tech.

[23]  Paulo Arruda,et al.  The Brazilian experience of sugarcane ethanol industry , 2009, In Vitro Cellular & Developmental Biology - Plant.

[24]  Alex G. Alexander,et al.  The energy cane alternative , 1985 .

[25]  J. Lynch,et al.  Integration of root phenes for soil resource acquisition , 2013, Front. Plant Sci..

[26]  Diego Nyko,et al.  A evolução das tecnologias agrícolas do setor sucroenergético: estagnação passageira ou crise estrutural? , 2013 .

[27]  Vinícius Gustavo Trombin,et al.  Food and Fuel: The example of Brazil , 2011 .

[28]  D. Lobell,et al.  The Influence of Climate Change on Global Crop Productivity1 , 2012, Plant Physiology.

[29]  Michael Taylor,et al.  An overview of second generation biofuel technologies. , 2010, Bioresource technology.

[30]  Thomas L. Slewinski,et al.  Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. , 2012, Journal of experimental botany.

[31]  B. Singh Biofuel Crop Sustainability Paradigm , 2013 .

[32]  Abraham Blum,et al.  Plant Breeding for Water-Limited Environments , 2010 .

[33]  Prakash Lakshmanan,et al.  Sugarcane biotechnology: The challenges and opportunities , 2005, In Vitro Cellular & Developmental Biology - Plant.

[34]  V. Gupta,et al.  Rootzone soil constraints : an overview , 2002 .

[35]  P. Moore,et al.  Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. , 2010, Plant biotechnology journal.

[36]  R. Loomis Productivity of Agricultural Systems , 1983 .

[37]  P. Moore Integration of sucrose accumulation processes across hierarchical scales: towards developing an understanding of the gene-to-crop continuum , 2005 .

[38]  Mark Stitt,et al.  Plant Growth – Basic Principles and Issues Relating to the Optimization of Biomass Production and Composition as a Feedstock for Energy , 2012 .

[39]  Marcia Pimentel,et al.  Food, Energy, and Society , 1979 .

[40]  Graham D. Bonnett,et al.  Sucrose accumulation in the sugarcane stem: pathways and control points for transport and compartmentation , 2005 .

[41]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[42]  J. van de Vooren,et al.  Environmental sustainability of sugarcane ethanol in Brazil. , 2008 .

[43]  Nils Berding,et al.  Germplasm Collection, Maintenance, and Use , 1987 .

[44]  J. Daniels,et al.  Taxonomy and Evolution , 1987 .

[45]  J. Tammisola Towards much more efficient biofuel crops - can sugarcane pave the way? , 2010, GM crops.

[46]  A. Singels,et al.  Analysing yield trends in the South African sugar industry , 2015 .

[47]  Marcelo Pereira da Cunha,et al.  Biorefineries for the production of first and second generation ethanol and electricity from sugarcane , 2013 .

[48]  A. Paterson,et al.  Sugarcane: The Crop, the Plant, and Domestication , 2013 .

[49]  J. Engels,et al.  Prebreeding in sugarcane with an emphasis on the programme of the Mauritius Sugar Industry Research Institute. , 2002 .

[50]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[51]  M. Delucchi,et al.  Impacts of biofuels on climate change, water use, and land use , 2010, Annals of the New York Academy of Sciences.

[52]  M. V. D. van der Heijden,et al.  The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. , 2008, Ecology letters.

[53]  A. Flammini,et al.  Food and Agriculture , 1942, Nature.

[54]  Paul H. Moore,et al.  Temporal and spatial regulation of sucrose accumulation in the sugarcane stem , 1995 .

[55]  J. Goldemberg,et al.  The Sustainability of Ethanol Production from Sugarcane , 2008, Renewable Energy.

[56]  D. M. Burner,et al.  Biomass production of sugarcane cultivars and early-generation hybrids , 1995 .

[57]  Jonathan P Lynch,et al.  Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. , 2014, Journal of experimental botany.

[58]  B. Legendre,et al.  Chromosome Transmission and Meiotic Stability of Sugarcane (Saccharum spp.) Hybrid Derivatives , 1993 .

[59]  M. L. C. Ripoli,et al.  Energetic potential of the sugar cane biomass in Brazil. , 2000 .

[60]  J. G. van de Vooren,et al.  Sugarcane ethanol: contributions to climate change mitigation and the environment , 2008 .

[61]  A. Paterson,et al.  The Gene Pool of Saccharum Species and Their Improvement , 2013 .

[62]  Rattan Lal,et al.  Anthropogenic Influences on World Soils and Implications to Global Food Security , 2007 .

[63]  W. Vermerris Genetic improvement of bioenergy crops , 2008 .

[64]  M. Nair Cytogenetics of Saccharum Officinarum L. and S. Spontaneum L. IV. Chromosome Number and Meiosis in S. Officinarum X S. Spontaneum Hybrids , 1975 .

[65]  S. Price,et al.  INTERSPECIFIC HYBRIDIZATION IN SUGARCANE BREEDING , 2007 .

[66]  R. Cesnik Melhoramento da cana-de-açúcar: marco sucro-alcooleiro no Brasil. , 2007 .

[67]  R. Voroney,et al.  THE SOIL HABITAT , 2007 .

[68]  Ryan P. Viator,et al.  Changes in juice quality and sugarcane yield with recurrent selection for sucrose. , 2010 .

[69]  A. Hodge,et al.  Plastic plants and patchy soils. , 2006, Journal of experimental botany.

[70]  Tobias Wojciechowski,et al.  Opportunities and challenges in the subsoil: pathways to deeper rooted crops. , 2015, Journal of experimental botany.

[71]  J. Goldemberg The Brazilian biofuels industry , 2008, Biotechnology for biofuels.

[72]  G. Bremer Problems in breeding and cytology of sugar cane , 1961, Euphytica.

[73]  R. M. Filho,et al.  Integrated first and second Generation Ethanol Production from Sugarcane , 2014 .

[74]  J. Glaszmann,et al.  Oligoclonal interspecific origin of ‘North Indian’ and ‘Chinese’ sugarcanes , 2004, Chromosome Research.

[75]  F. Andrew Smith,et al.  Plant roots. Growth, activity and interaction with soils , 2007 .

[76]  Rattan Lal,et al.  Principles of Soil Conservation and Management , 2008 .

[77]  Rattan Lal,et al.  Soil Erosion Impact on Agronomic Productivity and Environment Quality , 1998 .

[78]  J. Coombs Sugar-cane as an Energy Crop , 1984 .

[79]  Luciano Cunha de Sousa,et al.  De promessa a realidade: como o etanol celulósico pode revolucionar a indústria da cana-de-açúcar: uma avaliação do potencial competitivo e sugestões de política pública , 2015 .

[80]  A. Archer,et al.  Drivers leading to higher food prices: biofuels are not the main factor , 2009, In Vitro Cellular & Developmental Biology - Plant.

[81]  Hans Lambers,et al.  Plant and microbial strategies to improve the phosphorus efficiency of agriculture , 2011, Plant and Soil.

[82]  Griffith Cross Stevenson,et al.  Genetics and Breeding of Sugar Cane , 1965 .

[83]  Michael R. Ladisch FERMENTATION-DERIVED BUTANOL AND SCENARIOS FOR ITS USES IN ENERGY-RELATED APPLICATIONS , 1991 .

[84]  A. D'Hont,et al.  Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane , 2010, Molecular Genetics and Genomics.

[85]  D. M. Hogarth,et al.  The sugar cane biofactory - building blocks for the future. , 2005 .

[86]  A. Garside,et al.  The yield plateau in the Australian sugar industry: 1970-1990 , 1997 .

[87]  Stevens M. Brumbley,et al.  Sugarcane improvement through breeding and biotechnology , 2010 .

[88]  Carlos Araujo,et al.  Chemistry Based on Renewable Raw Materials: Perspectives for a Sugar Cane-Based Biorefinery , 2011, Enzyme research.

[89]  J. Soussana,et al.  Adapting agriculture to climate change , 2007, Proceedings of the National Academy of Sciences.

[90]  R. Lal,et al.  Bioenergy Crops and Carbon Sequestration , 2005 .

[91]  Phillip Jackson,et al.  Breeding for improved sugar content in sugarcane , 2005 .

[92]  Marcos Silveira Buckeridge,et al.  Bioenergy and the Sustainable Revolution , 2011 .

[93]  N. Berding,et al.  Plant Improvement of Sugarcane , 2007 .

[94]  Donald L. Plucknett,et al.  Sustaining Agricultural Yields , 1986 .

[95]  I. Buddenhagen RESISTANCE AND VULNERABILITY OF TROPICAL CROPS IN RELATION TO THEIR EVOLUTION AND BREEDING , 1977 .

[96]  Ulrich Schurr,et al.  Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation. , 2014, Biotechnology Advances.

[97]  B. Simmons,et al.  Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels , 2015, Front. Bioeng. Biotechnol..

[98]  Jonathan P Lynch,et al.  Root phenes that reduce the metabolic costs of soil exploration: opportunities for 21st century agriculture. , 2015, Plant, cell & environment.

[99]  M. Mccully,et al.  ROOTS IN SOIL: Unearthing the Complexities of Roots and Their Rhizospheres. , 1999, Annual review of plant physiology and plant molecular biology.

[100]  Telma Teixeira,et al.  NEW BUSINESS OPPORTUNITIES IN THE SUGAR-ALCOHOL INDUSTRY: ALCOHOL CHEMISTRY AND BIOREFINERIES , 2014 .

[101]  M. Buckeridge,et al.  Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol , 2014, BioEnergy Research.

[102]  G. Inman-Bamber Sugarcane yields and yield limiting processes , 2013 .

[103]  Arnaldo Walter,et al.  Brazilian sugarcane ethanol: developments so far and challenges for the future , 2014 .

[104]  O. Singh,et al.  Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio‐products , 2012 .

[105]  A. A. Garcia,et al.  Sugarcane Underground Organs: Going Deep for Sustainable Production , 2011, Tropical Plant Biology.

[106]  B. Govaerts,et al.  Conservation agriculture, improving soil quality for sustainable production systems? , 2012 .

[107]  Peter J. Gregory Roots, rhizosphere and soil: the route to a better understanding of soil science? , 2006 .

[108]  A. Rovira,et al.  The rhizosphere and its management to improve plant growth , 1999 .

[109]  C. T. Hotta,et al.  Sugarcane improvement: how far can we go? , 2012, Current opinion in biotechnology.

[110]  L. J. C. Autrey,et al.  From sugar production to biomass utilisation: the reform process to ensure the viability of the Mauritian sugar cane industry. , 2005 .

[111]  M. Crespi,et al.  Plant root growth, architecture and function , 2009, Plant and Soil.

[112]  G. Beyene,et al.  Genetic Engineering of Saccharum , 2013 .

[113]  Peter J. Gregory,et al.  Matching roots to their environment. , 2013, Annals of botany.

[114]  F. Botha Precision breeding to improve the usefulness of sugarcane. , 2007 .

[115]  Alex G. Alexander,et al.  Sugarcane physiology: A comprehensive study of the Saccharum source-to-sink system , 1973 .

[116]  F. Rosillo-Callé FOOD VERSUS FUEL: CAN WE AVOID CONFLICT? , 2014 .

[117]  M. Vincentz,et al.  Sugarcane: a major source of sweetness, alcohol, and bio-energy. , 2008 .

[118]  D. Montgomery Soil erosion and agricultural sustainability , 2007, Proceedings of the National Academy of Sciences.

[119]  D. Wardle,et al.  Linking aboveground and belowground communities: the indirect influence of aphid species identity and diversity on a three trophic level soil food web , 2004 .

[120]  J. Lynch Root Architecture and Plant Productivity , 1995, Plant physiology.

[121]  K. Koch,et al.  Carbon partitioning in sugarcane (Saccharum species) , 2013, Front. Plant Sci..

[122]  Sizuo Matsuoka,et al.  SUGARCANE TILLERING AND RATOONING : KEY FACTORS FOR A PROFITABLE CROPPING , 2012 .

[123]  M. Buckeridge,et al.  ROUTES FOR CELLULOSIC ETHANOL IN BRAZIL , 2014 .

[124]  P. N. Nelson,et al.  Exploring the response of sugar cane to sodic and saline conditions through natural variation in the field , 2000 .

[125]  A. D'Hont,et al.  Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana , 2005, Cytogenetic and Genome Research.

[126]  J. Glaszmann,et al.  Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics , 1996, Molecular and General Genetics MGG.

[127]  Johann M Rohwer,et al.  Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. , 2007, Phytochemistry.

[128]  Joshua S Yuan,et al.  Plants to power: bioenergy to fuel the future. , 2008, Trends in plant science.

[129]  P. Rein Prospects for the conversion of a sugar mill into a biorefinery. , 2007 .

[130]  S. Sachdeva,et al.  Rhizosphere: its structure, bacterial diversity and significance , 2014, Reviews in Environmental Science and Bio/Technology.

[131]  S. Polasky,et al.  Agricultural sustainability and intensive production practices , 2002, Nature.

[132]  C. Farinas,et al.  2G ethanol from the whole sugarcane lignocellulosic biomass , 2015, Biotechnology for Biofuels.