The Procter and Gamble Company: Current State and Future Needs in Materials Modeling

New material development and commercial application is often quite complex due to the material properties and multiple transformations materials undergo in the supply chain, manufacturing process, and distribution of the finished product. In the fast-moving consumer goods industry of personal and household care products, these complexities are particularly acute due to the focus on and use of “commodity” materials that, at times, have significant variability in material properties. These materials are often formulated into complex liquids or assembled products, which undergo multiple transformations during making and can further undergo additional changes during distribution and use by the consumer (some desired, some not). At each stage of development, manufacturing, and distribution, materials models can be tremendously helpful in material and process selection and optimization. This chapter provides an overview of the current state-of-the-art in materials modeling as applied to the soft materials typically used in household and personal care products, with particular focus on modeling tools that span the length and time scales most relevant for modeling. We review the tools and methods in materials modeling and provide several examples where these tools have been used to guide the development of new materials. We conclude with commentary on additional advancements needed to drive practical application of these modeling tools more broadly for material development.

[1]  Michael Griebel,et al.  Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites , 2004 .

[2]  M. Kraft,et al.  A new model for the drying of droplets containing suspended solids after shell formation , 2009 .

[3]  Peter H. Koenig,et al.  Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field. , 2014, The journal of physical chemistry. B.

[4]  G Patlewicz,et al.  An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential , 2007, SAR and QSAR in environmental research.

[5]  Donald W. Brenner,et al.  The stress–strain behavior of polymer–nanotube composites from molecular dynamics simulation , 2003 .

[6]  David T. Stanton,et al.  Development of a Quantitative Structure-Property Relationship Model for Estimating Normal Boiling Points of Small Multifunctional Organic Molecules , 2000, J. Chem. Inf. Comput. Sci..

[7]  A J Hopfinger,et al.  Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis. , 2001, Toxicological sciences : an official journal of the Society of Toxicology.

[8]  K. Binder,et al.  Off-lattice Monte Carlo methods for coarse-grained models of polymeric materials and selected applications , 2002 .

[9]  Florent Goujon,et al.  Mesoscopic simulation of entanglements using dissipative particle dynamics: application to polymer brushes. , 2008, The Journal of chemical physics.

[10]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[11]  P. Khalatur,et al.  Microphase separation in regular and random сopolymer melts by DPD simulations , 2011 .

[12]  Patrick S. Doyle,et al.  On the coarse-graining of polymers into bead-spring chains , 2004 .

[13]  Ronald E. Miller,et al.  Atomistic/continuum coupling in computational materials science , 2003 .

[14]  G. Fredrickson The equilibrium theory of inhomogeneous polymers , 2005 .

[15]  Juan J de Pablo,et al.  Influence of confinement on the fragility of antiplasticized and pure polymer films. , 2006, Physical review letters.

[16]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[17]  Alexander Stukowski,et al.  A variational formulation of the quasicontinuum method based on energy sampling in clusters , 2009 .

[18]  R. Pandey,et al.  Exfoliation of Stacked Sheets: Effects of Temperature, Platelet Size, and Quality of Solvent by a Monte Carlo Simulation , 2006 .

[19]  Yulong Ding,et al.  Numerical simulation of sedimentation of microparticles using the discrete particle method , 2008 .

[20]  J. Brisson,et al.  On the Correlation between Miscibility and Solubility Properties of Energetic Plasticizers/Polymer Blends: Modeling and Simulation Studies , 2008 .

[21]  Andrei A. Gusev,et al.  Dynamics of small molecules in dense polymers subject to thermal motion , 1993 .

[22]  S. D. Smith,et al.  Molecular dynamics simulation of atactic polystyrene. 2. Comparison with neutron scattering data , 1994 .

[23]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[24]  F. Chinesta,et al.  Review on the Brownian Dynamics Simulation of Bead-Rod-Spring Models Encountered in Computational Rheology , 2012 .

[25]  Rajarshi Guha,et al.  Interpreting Computational Neural Network Quantitative Structure-Activity Relationship Models: A Detailed Interpretation of the Weights and Biases , 2005, J. Chem. Inf. Model..

[26]  D. H. Melik Adsorption from a well-stirred solution of finite volume , 1990 .

[27]  Jana K. Shen,et al.  Atomistic simulations of pH-dependent self-assembly of micelle and bilayer from fatty acids. , 2012, The Journal of chemical physics.

[28]  C L Alden,et al.  Survey of the QSAR and in vitro approaches for developing non-animal methods to supersede the in vivo LD50 test. , 1990, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[29]  Qingcheng Yang,et al.  Multiresolution Molecular Mechanics: Dynamics , 2013 .

[30]  F. Pires,et al.  Predicting the mechanical behavior of amorphous polymeric materials under strain through multi-scale simulation , 2014 .

[31]  Francis J. Doyle,et al.  Predictive Modeling of Key Process Variables in Granulation Processes based on Dynamic Partial Least Squares , 2009 .

[32]  R. Larson,et al.  Brownian dynamics simulations of flexible polymers with spring-spring repulsions , 2001 .

[33]  J. Clarke,et al.  Molecular dynamics computer simulation of polymer fiber microstructure , 1986 .

[34]  J. Clarke,et al.  Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology , 1991 .

[35]  W. Briels,et al.  Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  M. Kraft,et al.  A new model for the drying of droplets containing suspended solids , 2009 .

[37]  Paola Gramatica,et al.  Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. , 2003, Environmental health perspectives.

[38]  Nina Nikolova-Jeliazkova,et al.  QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review , 2005, Alternatives to laboratory animals : ATLA.

[39]  T C Feijtel,et al.  Impact of biodegradation test methods on the development and applicability of biodegradation QSARs. , 1996, SAR and QSAR in environmental research.

[40]  A. M. Stoneham,et al.  Not too big, not too small: The appropriate scale , 2003, Nature materials.

[41]  J. Jaworska,et al.  Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. , 2003, Environmental health perspectives.

[42]  Robert P. Behringer,et al.  Coarse graining for an impeller-driven mixer system , 2012 .

[43]  G. Hu,et al.  A dissipative particle dynamics study on the compatibilizing process of immiscible polymer blends with graft copolymers , 2012 .

[44]  F. Müller-Plathe,et al.  Molecular dynamics method to locally resolve Poisson's ratio: Mechanical description of the solid-soft-matter interphase. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  M. A. Mazo,et al.  Molecular Dynamics Simulation of Uniaxial Deformation of Glassy Amorphous Atactic Polystyrene , 2004 .

[46]  G. Fredrickson,et al.  Field-theoretic polymer simulations , 2001 .

[47]  M. C. Newman,et al.  The practice of structure activity relationships (SAR) in toxicology. , 2000, Toxicological sciences : an official journal of the Society of Toxicology.

[48]  S. Thakur,et al.  An experimental and numerical study of packing, compression, and caking behaviour of detergent powders , 2014 .

[49]  H. Diersch,et al.  Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 1. Theory , 2010 .

[50]  P. Nealey,et al.  Mechanical properties of antiplasticized polymer nanostructures , 2010 .

[51]  H. Diersch,et al.  Modeling Unsaturated Flow in Absorbent Swelling Porous Media: Part 2. Numerical Simulation , 2011 .

[52]  Matej Praprotnik,et al.  Multiscale simulation of soft matter: from scale bridging to adaptive resolution. , 2008, Annual review of physical chemistry.

[53]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[55]  Martin R. Siegert,et al.  Gas sorption isotherms in swelling glassy polymers—Detailed atomistic simulations , 2013 .

[56]  M. Guenza,et al.  Thermodynamic consistency in variable-level coarse graining of polymeric liquids. , 2012, Physical review letters.

[57]  Marcus Müller,et al.  Single chain in mean field simulations: quasi-instantaneous field approximation and quantitative comparison with Monte Carlo simulations. , 2006, The Journal of chemical physics.

[58]  E. Maginn,et al.  Molecular Dynamics Simulations of Alkanes in the Zeolite Silicalite: Evidence for Resonant Diffusion Effects , 1997 .

[59]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[60]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[61]  D. T. Stanton,et al.  Effects of surfactants on the rotifer, Brachionus calyciflorus, in a chronic toxicity test and in the development of qsars , 1997 .

[62]  Bin Liu,et al.  The atomic-scale finite element method , 2004 .

[63]  Emilio Xavier Esposito,et al.  Categorical QSAR models for skin sensitization based on local lymph node assay measures and both ground and excited state 4D-fingerprint descriptors , 2008, J. Comput. Aided Mol. Des..

[64]  Wataru Shinoda,et al.  Computer simulation studies of self-assembling macromolecules. , 2012, Current opinion in structural biology.

[65]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[66]  C. Judson King,et al.  Spray drying : Influence of developing drop morphology on drying rates and retention of volatile substances. 2. Modeling , 2000 .

[67]  A. E. Dowrey,et al.  Polymer alloys of Nodax copolymers and poly(lactic acid). , 2004, Macromolecular bioscience.

[68]  F. Schmid,et al.  Hybrid Lattice Boltzmann / Dynamic Self-Consistent Field Simulations of Microphase Separation and Vesicle Formation in Block Copolymer Systems , 2011, 1204.2088.

[69]  Ling Zhou,et al.  Ordered microstructures self-assembled from A2m+1BmCm comblike copolymers , 2011 .

[70]  Y. Inoue,et al.  Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) , 2007 .

[71]  Siewert J Marrink,et al.  Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. , 2011, Physical chemistry chemical physics : PCCP.

[72]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[73]  Natasha Maurits,et al.  The MesoDyn project: software for mesoscale chemical engineering , 1999 .

[74]  K. Binder,et al.  Monte Carlo simulations of polymer dynamics: Recent advances , 1997 .

[75]  G. Odegard,et al.  Prediction of Mechanical Properties of Polymers With Various Force Fields , 2005 .

[76]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[77]  Pavel B. Bochev,et al.  On Atomistic-to-Continuum Coupling by Blending , 2008, Multiscale Model. Simul..

[78]  Jean-Louis Barrat,et al.  Molecular dynamics simulations of glassy polymers , 2010, 1002.2065.

[79]  David T. Stanton,et al.  On the Physical Interpretation of QSAR Models , 2003, J. Chem. Inf. Comput. Sci..

[80]  Gareth Thomas,et al.  Use of quantitative structural analysis to predict fish bioconcentration factors for pesticides. , 2009, Journal of agricultural and food chemistry.

[81]  P. Linse,et al.  Monte Carlo simulations of the adsorption of amphiphilic oligomers at hydrophobic interfaces , 1997 .

[82]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[83]  Guirong Liu,et al.  Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments , 2010 .

[84]  K. Freed,et al.  Plasticization and antiplasticization of polymer melts diluted by low molar mass species. , 2010, The Journal of chemical physics.

[85]  Klaus Schulten,et al.  Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics , 2013, Nature.

[86]  Petra S Kern,et al.  TIMES-SS--a promising tool for the assessment of skin sensitization hazard. A characterization with respect to the OECD validation principles for (Q)SARs and an external evaluation for predictivity. , 2007, Regulatory toxicology and pharmacology : RTP.

[87]  Harold S. Park,et al.  Bridging Scale Methods for Nanomechanics and Materials , 2006 .

[88]  Yield conditions for deformation of amorphous polymer glasses. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[89]  Yi Li,et al.  4D-fingerprint categorical QSAR models for skin sensitization based on the classification of local lymph node assay measures. , 2007, Chemical research in toxicology.

[90]  Jian Feng,et al.  Microphase separation of graft-diblock copolymer by dissipative particle dynamics simulation , 2008 .

[91]  A. Waas,et al.  A constitutive model for finite deformation response of layered polyurethane-montmorillonite nanocomposites , 2011 .

[92]  Roland Faller Automatic coarse graining of polymers , 2004 .

[93]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[94]  Nina Nikolova-Jeliazkova,et al.  An Approach to Determining Applicability Domains for QSAR Group Contribution Models: An Analysis of SRC KOWWIN , 2005, Alternatives to laboratory animals : ATLA.

[95]  F. Doyle,et al.  Predictive Dynamic Modeling of Key Process Variables in Granulation Processes Using Partial Least Squares Approach , 2011 .

[96]  Matthias Wessling,et al.  When do sorption-induced relaxations in glassy polymers set in? , 2007 .

[97]  Patrick S. Doyle,et al.  Brownian Dynamics Simulations of Polymers and Soft Matter , 2005 .

[98]  Grant D. Smith,et al.  Phase separation in binary mixtures containing polymers: A quantitative comparison of single‐chain‐in‐mean‐field simulations and computer simulations of the corresponding multichain systems , 2005 .

[99]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[100]  David T. Stanton,et al.  On the importance of topological descriptors in understanding structure–property relationships , 2008, J. Comput. Aided Mol. Des..

[101]  J. Pablo,et al.  Local elastic constants in thin films of an fcc crystal , 2002, cond-mat/0210265.

[102]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[103]  Gregory M. Odegard,et al.  Computational materials: Multi-scale modeling and simulation of nanostructured materials , 2005 .

[104]  D. Tildesley,et al.  On the role of hydrodynamic interactions in block copolymer microphase separation , 1999 .

[105]  G. Odegard,et al.  Constitutive Modeling of Nanotube- Reinforced Polymer Composite Systems , 2001 .

[106]  S. Subramaniam,et al.  Granular Flow in Silo Discharge: Discrete Element Method Simulations and Model Assessment , 2013 .

[107]  N. Maurits,et al.  Hydrodynamic effects in three-dimensional microphase separation of block copolymers: Dynamic mean-field density functional approach , 1998 .

[108]  M. Boyce,et al.  Molecular response of a glassy polymer to active deformation , 2004 .

[109]  J. Pablo,et al.  Computer Simulation of the Mechanical Properties of Amorphous Polymer Nanostructures , 2003 .

[110]  M. Klein,et al.  Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution , 2010 .

[111]  M. Klein,et al.  Effect of carboxylation on carbon nanotube aqueous dispersibility: A predictive coarse-grained molecular dynamics approach , 2012 .

[112]  Qiang Wang,et al.  On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation. , 2013, The Journal of chemical physics.

[113]  Haojun Liang,et al.  Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study. , 2009, The Journal of chemical physics.

[114]  Markus Kraft,et al.  Modelling and validation of granulation with heterogeneous binder dispersion and chemical reaction , 2007 .

[115]  D. Theodorou,et al.  Prediction of Sorption of CO2 in Glassy Atactic Polystyrene at Elevated Pressures Through a New Computational Scheme , 2009 .

[116]  Yunqi Li,et al.  Monte Carlo Simulation of the Compatibility of Graft Copolymer Compatibilized Two Incompatible Homopolymer Blends: Effect of Graft Structure , 2007 .

[117]  M. Klein,et al.  Computer Simulation of Self-Assembling Macromolecules , 2013 .

[118]  David T Stanton,et al.  QSAR and QSPR model interpretation using partial least squares (PLS) analysis. , 2012, Current computer-aided drug design.

[119]  M. Guenza,et al.  Effective potentials for representing polymers in melts as chains of interacting soft particles. , 2013, The Journal of chemical physics.

[120]  Mary C Boyce,et al.  Enhanced mobility accompanies the active deformation of a glassy amorphous polymer. , 2002, Physical review letters.

[121]  I. Noda,et al.  Nodax™ Class PHA Copolymers: Their Properties and Applications , 2010 .

[122]  Jatin,et al.  Investigations into the origins of plastic flow and strain hardening in amorphous glassy polymers , 2014 .

[123]  Jana K. Shen,et al.  Self-assembly and bilayer-micelle transition of fatty acids studied by replica-exchange constant pH molecular dynamics. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[124]  Albert C. To,et al.  Multiresolution molecular mechanics: Implementation and efficiency , 2017, J. Comput. Phys..

[125]  David C. Fleming,et al.  Finite Element Simulation of Delamination with Application to Crashworthy Design , 2006 .

[126]  Michele Parrinello,et al.  Energy Conservation in Adaptive Hybrid Atomistic/Coarse-Grain Molecular Dynamics. , 2007, Journal of chemical theory and computation.

[127]  Leon P.B.M. Janssen,et al.  Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications , 2006 .

[128]  Yuhang Wang,et al.  Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized born implicit‐solvent model , 2011, J. Comput. Chem..

[129]  T. Honda,et al.  Hydrodynamic effects on the disorder-to-order transitions of diblock copolymer melts. , 2008, The Journal of chemical physics.

[130]  R. Pandey,et al.  Multiscale dynamics of an interacting sheet by a bond‐fluctuating Monte Carlo simulation , 2006 .

[131]  Bernd Ensing,et al.  Adaptive multiscale molecular dynamics of macromolecular fluids. , 2010, Physical review letters.

[132]  Yi Li,et al.  Categorical QSAR Models for skin sensitization based upon local lymph node assay classification measures part 2: 4D-fingerprint three-state and two-2-state logistic regression models. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[133]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[134]  Michael A Henson,et al.  Experimental investigation and population balance equation modeling of solid lipid nanoparticle aggregation dynamics. , 2012, Journal of colloid and interface science.

[135]  Zhibing Zhang,et al.  Determination of the elastic properties of single microcapsules using micromanipulation and finite element modeling , 2011 .

[136]  Juan J de Pablo,et al.  Mechanical heterogeneities in model polymer glasses at small length scales. , 2004, Physical review letters.

[137]  C. Avendaño,et al.  Coarse‐grained methods for polymeric materials: enthalpy‐ and entropy‐driven models , 2014 .

[138]  M. A. Mazo,et al.  Strain softening and hardening of amorphous polymers: Atomistic simulation of bulk mechanics and local dynamics , 2005 .

[139]  Markus Kraft,et al.  Parameter estimation in a multidimensional granulation model , 2010 .

[140]  H. C. Öttinger,et al.  CONNFFESSIT Approach for Solving a Two-Dimensional Viscoelastic Fluid Problem , 1995 .

[141]  John C. Shelley,et al.  Computer simulation of surfactant solutions , 2000 .

[142]  W. Goddard,et al.  Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations. , 2007, The journal of physical chemistry. B.

[143]  S Dimitrov,et al.  Charged partial surface area (CPSA) descriptors QSAR applications , 2002, SAR and QSAR in environmental research.

[144]  Gregory M. Odegard,et al.  Modeling of the mechanical properties of nanoparticle/polymer composites , 2005 .

[145]  T. Belytschko,et al.  A bridging domain method for coupling continua with molecular dynamics , 2004 .

[146]  Ali Hassanpour,et al.  Tribo-Electrification and Associated Segregation of Pharmaceutical Bulk Powders , 2011 .