Hydrogen adsorption and storage of pristine and metal decorated hexagonal GaN monolayer: a first-principles study

Using the first-principles calculations based on density functional theory (DFT-D2 method), we systematically study the structural, energetic and electronic properties of hydrogen atom adsorbed on pristine and metal atom (Li, Na, K, Ni, Pd and Pt) decorated GaN monolayer (GaN-ML). The results show that the metal decorated GaN-ML substrates shows a significant enhancement of adsorption the hydrogen atom than the pristine GaN-ML. Therefore, the use of metal-decorated gallium nitride for hydrogen storage improve the hydrogen storage effic

[1]  Northrup,et al.  Atomic arrangement at the AlN/SiC interface. , 1996, Physical review. B, Condensed matter.

[2]  L. Bicelli,et al.  Hydrogen: A clean energy source , 1986 .

[3]  Yan Zhang,et al.  First-principles study of hydrogen interaction with carbon-doped GaN nanotube , 2010 .

[4]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[5]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[6]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[7]  Jian-min Zhang,et al.  Structural, electronic, and magnetic properties of the period vacancy in zigzag GaN nanoribbons , 2013 .

[8]  Deviation from thermodynamic equilibrium at the initial stage of the GaN growth by metalorganic chemical vapor deposition (MOCVD) , 2001 .

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  Junjie Zhu,et al.  Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. , 2015, Nanoscale.

[12]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[13]  Jian-Bo Deng,et al.  Density functional calculation of transition metal adatom adsorption on graphene , 2010 .

[14]  S. Gates,et al.  Hydrogen desorption and ammonia adsorption on polycrystalline GaN surfaces , 1995 .

[15]  Ke-Wei Xu,et al.  Improving SO2 gas sensing properties of graphene by introducing dopant and defect: A first-principles study , 2014 .

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  A. Wickenden,et al.  Composition and structure of the GaN{0001¯}-(1×1) surface , 1996 .

[18]  P. Hacke,et al.  Monitoring surface stoichiometry with the (2×2) reconstruction during growth of hexagonal‐phase GaN by molecular beam epitaxy , 1996 .

[19]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[20]  Effect of metal adatoms on hydrogen adsorption properties of phosphorene , 2017 .

[21]  Jinlan Wang,et al.  Tailoring band gap in GaN sheet by chemical modification and electric field: Ab initio calculations , 2011 .

[22]  James S. Speck,et al.  Control of GaN surface morphologies using plasma-assisted molecular beam epitaxy , 2000 .

[23]  M. Katsnelson,et al.  Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective , 2012, 1206.1222.