Low degree splines for locally quad-dominant meshes

A mesh is locally quad-dominant (lqd) if all non-4-sided facets are surrounded by quadrilaterals. Lqd meshes allow for irregular nodes where n ≠ 4 quads meet and for multi-sided facets, called T-gons, that end quad-strips and so adjust mesh density. This paper introduces a new class of bi-cubic (bi-3) Geometric T-joint (GT) splines whose control nets are τ-nets, i.e. T-gons surrounded by quads. These GT-splines join smoothly with each other, bi-3 G-splines and regular C 1 bi-quadratic splines to form smooth surfaces of degree at most bi-3.

[1]  Tony DeRose,et al.  Generalized B-spline surfaces of arbitrary topology , 1990, SIGGRAPH.

[2]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[3]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[4]  Josef Hoschek,et al.  Handbook of Computer Aided Geometric Design , 2002 .

[5]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[6]  Ulrich Reif,et al.  Biquadratic G-spline surfaces , 1995, Comput. Aided Geom. Des..

[7]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[8]  Kestutis Karciauskas,et al.  High quality refinable G‐splines for locally quad‐dominant meshes with T‐gons , 2019, Comput. Graph. Forum.

[9]  Wenzel Jakob,et al.  Field-aligned online surface reconstruction , 2017, ACM Trans. Graph..

[10]  Jiansong Deng,et al.  Dimensions of biquadratic spline spaces over T-meshes , 2008, J. Comput. Appl. Math..

[11]  Shi-Min Hu,et al.  An incremental approach to feature aligned quad dominant remeshing , 2008, SPM '08.

[12]  Denis Zorin,et al.  Dyadic T-mesh subdivision , 2015, ACM Trans. Graph..

[13]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[14]  Joe D. Warren,et al.  Geometric continuity , 1991, Comput. Aided Geom. Des..

[15]  Jiansong Deng,et al.  A new basis for PHT-splines , 2015, Graph. Model..

[16]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[17]  Jörg Peters,et al.  Point-augmented biquadratic C1 subdivision surfaces , 2015, Graph. Model..

[18]  J. A. Gregory Geometric continuity , 1989 .

[19]  Jörg Peters,et al.  Localized G-splines for quad & T-gon meshes , 2019, Comput. Aided Geom. Des..

[20]  Fang Deng,et al.  Dimensions of spline spaces over non-rectangular T-meshes , 2016, Adv. Comput. Math..

[21]  Fang Deng,et al.  Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes , 2014, J. Comput. Appl. Math..

[22]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[23]  Jörg Peters,et al.  Smooth multi-sided blending of biquadratic splines , 2015, Comput. Graph..

[24]  Kestutis Karciauskas,et al.  Refinable smooth surfaces for locally quad-dominant meshes with T-gons , 2019, Comput. Graph..

[25]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..

[26]  S. Owen,et al.  H-Morph: an indirect approach to advancing front hex meshing , 1999 .

[27]  Tony DeRose,et al.  Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces , 1990, Comput. Aided Geom. Des..

[28]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[29]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[30]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[31]  Yifan Chen,et al.  Highlight-line algorithm for realtime surface-quality assessment , 1994, Comput. Aided Des..

[32]  Jörg Peters,et al.  T-junctions in Spline Surfaces , 2017, ACM Trans. Graph..