A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems

We develop a simple and accurate method to solve fractional variational and fractional optimal control problems with dependence on Caputo and Riemann–Liouville operators. Using known formulas for computing fractional derivatives of polynomials, we rewrite the fractional functional dynamical optimization problem as a classical static optimization problem. The method for classical optimal control problems is called Ritz’s method. Examples show that the proposed approach is more accurate than recent methods available in the literature.

[1]  Ricardo Almeida,et al.  A generalized fractional variational problem depending on indefinite integrals: Euler–Lagrange equation and numerical solution , 2013 .

[2]  Stevan Pilipović,et al.  Expansion formula for fractional derivatives in variational problems , 2014 .

[3]  Delfim F. M. Torres,et al.  Existence of minimizers for generalized Lagrangian functionals and a necessary optimality condition – Application to fractional variational problems , 2014, Differential and Integral Equations.

[4]  Agnieszka B. Malinowska,et al.  Advanced Methods in the Fractional Calculus of Variations , 2015 .

[5]  Delfim F. M. Torres,et al.  Fractional Optimal Control in the Sense of Caputo and the Fractional Noether's Theorem , 2007, 0712.1844.

[6]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[7]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[8]  José António Tenreiro Machado,et al.  New trends in fractional dynamics , 2014 .

[9]  Delfim F. M. Torres,et al.  Leitmann's direct method for fractional optimization problems , 2010, Appl. Math. Comput..

[10]  J. Trujillo,et al.  A unified approach to fractional derivatives , 2012 .

[11]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[12]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[13]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[14]  J. Machado,et al.  A Review of Definitions for Fractional Derivatives and Integral , 2014 .

[15]  Delfim F. M. Torres,et al.  A discrete method to solve fractional optimal control problems , 2014, 1403.5060.

[16]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[17]  S. Pooseh Computational Methods in the Fractional Calculus of Variations , 2013, 1312.4064.

[18]  Mariusz Ciesielski,et al.  Numerical solution of fractional Sturm-Liouville equation in integral form , 2014, 1405.2630.

[19]  Ronald H. W. Hoppe,et al.  Numerical Solution of Some Types of Fractional Optimal Control Problems , 2013, TheScientificWorldJournal.

[20]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[21]  José António Tenreiro Machado,et al.  Some pioneers of the applications of fractional calculus , 2013 .

[22]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[23]  Manuel Duarte Ortigueira,et al.  Fractional Calculus for Scientists and Engineers , 2011, Lecture Notes in Electrical Engineering.

[24]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[25]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[26]  Delfim F. M. Torres,et al.  Fractional order optimal control problems with free terminal time , 2013, 1302.1717.

[27]  Mehdi Dehghan,et al.  A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials , 2016 .

[28]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[29]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Dumitru Baleanu,et al.  A fractional variational approach to the fractional basset-type equation , 2013 .

[31]  Agnieszka B. Malinowska,et al.  A Generalized Fractional Calculus of Variations , 2013, 1401.7291.

[32]  Om P. Agrawal,et al.  Fractional variational calculus in terms of Riesz fractional derivatives , 2007 .

[33]  Delfim F. M. Torres,et al.  Numerical approximations of fractional derivatives with applications , 2012, 1208.2588.