Metrics for Phylogenetic Networks I: Generalizations of the Robinson-Foulds Metric

The assessment of phylogenetic network reconstruction methods requires the ability to compare phylogenetic networks. This is the first in a series of papers devoted to the analysis and comparison of metrics for tree-child time-consistent phylogenetic networks on the same set of taxa. In this paper, we study three metrics that have already been introduced in the literature: the Robinson-Foulds distance, the tripartition distance, and the mu-distance. They generalize to networks the classical Robinson-Foulds or partition distance for phylogenetic trees. We analyze the behavior of these metrics by studying their least and largest values and when they achieve them. As a by-product of this study, we obtain tight bounds on the size of a tree-child time-consistent phylogenetic network.

[1]  G. Valiente,et al.  Two metrics for general phylogenetic networks , 2008, 0801.2354.

[2]  Tandy J. Warnow,et al.  Reconstructing reticulate evolution in species: theory and practice , 2004, RECOMB.

[3]  C. Darwin,et al.  The Correspondence of Charles Darwin , 1988 .

[4]  R. Griffiths,et al.  Bounds on the minimum number of recombination events in a sample history. , 2003, Genetics.

[5]  C. Bailey,et al.  Plant Systematics: A Phylogenetic Approach , 2008 .

[6]  Gabriel Cardona,et al.  Tripartitions do not always discriminate phylogenetic networks , 2008, Mathematical biosciences.

[7]  H. Ochman,et al.  Lateral gene transfer and the nature of bacterial innovation , 2000, Nature.

[8]  Dan Gusfield,et al.  Optimal, Efficient Reconstruction of Phylogenetic Networks with Constrained Recombination , 2004, J. Bioinform. Comput. Biol..

[9]  Vineet Bafna,et al.  The number of recombination events in a sample history: conflict graph and lower bounds , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[10]  S. J. Willson Reconstruction of certain phylogenetic networks from the genomes at their leaves. , 2008, Journal of theoretical biology.

[11]  Tandy J. Warnow,et al.  Towards the Development of Computational Tools for Evaluating Phylogenetic Network Reconstruction Methods , 2002, Pacific Symposium on Biocomputing.

[12]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[13]  Charles Semple,et al.  Computing the minimum number of hybridization events for a consistent evolutionary history , 2007, Discret. Appl. Math..

[14]  Gabriel Cardona,et al.  Comparison of Tree-Child Phylogenetic Networks , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[15]  Kaizhong Zhang,et al.  Perfect phylogenetic networks with recombination , 2001, J. Comput. Biol..

[16]  Gabriel Valiente,et al.  Algorithms on Trees and Graphs , 2002, Springer Berlin Heidelberg.

[17]  M. Pagel Inferring the historical patterns of biological evolution , 1999, Nature.

[18]  Charles Semple,et al.  Hybrids in real time. , 2006, Systematic biology.

[19]  C. Stace Plant taxonomy and biosystematics , 1981 .

[20]  Charles Semple,et al.  A Framework for Representing Reticulate Evolution , 2005 .

[21]  Joan Oliver Araujo,et al.  The University of the Balearic Islands , 1993 .

[22]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[23]  K. Crandall,et al.  A Comparison of Phylogenetic Network Methods Using Computer Simulation , 2008, PloS one.

[24]  Doolittle Wf Phylogenetic Classification and the Universal Tree , 1999 .

[25]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in bacterial and archaeal complete genomes. , 2000, Genome research.

[26]  Wing-Kin Sung,et al.  Fast algorithms for computing the tripartition-based distance between phylogenetic networks , 2005, J. Comb. Optim..

[27]  Tandy J. Warnow,et al.  Phylogenetic networks: modeling, reconstructibility, and accuracy , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  Grace Jordison Molecular Biology of the Gene , 1965, The Yale Journal of Biology and Medicine.

[29]  Yun S. Song,et al.  Constructing Minimal Ancestral Recombination Graphs , 2005, J. Comput. Biol..

[30]  Gabriel Valiente Efficient Algorithms on Trees and Graphs with Unique Node Labels , 2007, Applied Graph Theory in Computer Vision and Pattern Recognition.

[31]  Katharina T. Huber,et al.  Imputing Supertrees and Supernetworks from Quartets , 2006, WABI.

[32]  Dan Gusfield,et al.  The Fine Structure of Galls in Phylogenetic Networks , 2004, INFORMS J. Comput..

[33]  G. Valiente,et al.  Metrics for Phylogenetic Networks II: Nodal and Triplets Metrics , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[34]  Gabriel Cardona,et al.  A distance metric for a class of tree-sibling phylogenetic networks , 2008, Bioinform..

[35]  L. Orgel,et al.  Phylogenetic Classification and the Universal Tree , 1999 .