Modeling height-diameter relationship for artificial monoculture Metasequoia glyptostroboides in sub-tropic coastal megacity Shanghai, China

[1]  Juan A. Blanco,et al.  Sustainable Management of Metasequoia glyptostroboides Plantation Forests in Shanghai , 2018 .

[2]  Zhixiang Zhang,et al.  Development and evaluation of height diameter at breast models for native Chinese Metasequoia , 2017, PloS one.

[3]  L. Ow,et al.  Urban tree growth and their dependency on infiltration rates in structural soil and structural cells , 2017 .

[4]  Gregory A. Dahle,et al.  A review of factors that affect the static load- bearing capacity of urban trees , 2017 .

[5]  Z. Adamec,et al.  Comparison of parametric and nonparametric methods for modeling height-diameter relationships , 2017 .

[6]  K. Doick,et al.  Allometric relationships for urban trees in Great Britain , 2016 .

[7]  W. Zeng,et al.  Height–diameter equations for larch plantations in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models , 2016 .

[8]  Hyun-Jun Kim,et al.  Developing the volume models for 5 major species of street trees in Gwangju metropolitan city of Korea , 2016 .

[9]  T. Fonseca,et al.  Height-diameter models for maritime pine in Portugal: a comparison of basic, generalized and mixed-effects models , 2016 .

[10]  Lauri Mehtätalo,et al.  Modeling height-diameter curves for prediction , 2015 .

[11]  Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng. , 2014, Plant science : an international journal of experimental plant biology.

[12]  U. Diéguez-Aranda,et al.  A Comparison of Model Forms for the Development of Height-Diameter Relationships in Even-Aged Stands , 2014 .

[13]  G. Dahle,et al.  Allometric and mass relationships of Betula populifolia in a naturally assembled urban brownfield: implications for carbon modeling , 2014, Urban Ecosystems.

[14]  J. Yavitt,et al.  Phosphorus enrichment helps increase soil carbon mineralization in vegetation along an urban-to-rural gradient, Nanchang, China , 2014 .

[15]  S. Wilczyński,et al.  The application of the tree-ring chronologies in assessing ecological requirements of Metasequoia glyptostroboides growing in southern Poland , 2014 .

[16]  Analysis of regional variation of height growth and slenderness in populations of six urban tree species using a quantile regression approach , 2014 .

[17]  J. Fernández-Martínez,et al.  Tree height prediction approaches for uneven-aged beech forests in northwestern Spain , 2013 .

[18]  Kan Huang,et al.  How to improve the air quality over megacities in China: pollution characterization and source analysis in Shanghai before, during, and after the 2010 World Expo , 2013 .

[19]  Guangrong Shen,et al.  Characteristics of carbon storage in Shanghai’s urban forest , 2013 .

[20]  E. Mcpherson,et al.  Urban Tree Growth Modeling , 2012, Arboriculture & Urban Forestry.

[21]  J. Byrne,et al.  A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones , 2012 .

[22]  Michael S. Watt,et al.  Moving beyond simple linear allometric relationships between tree height and diameter , 2011 .

[23]  Xiaobing Zhou,et al.  Nitrogen deposition and its ecological impact in China: an overview. , 2011, Environmental pollution.

[24]  L. Hongying,et al.  Soil organic carbon storage changes in Yangtze Delta region, China , 2011 .

[25]  C. Beijing Height-Diameter Model for Major Tree Species in China Using the Classified Height Method , 2011 .

[26]  L. Roberts 9 billion? , 2011, Science.

[27]  K. Gadow,et al.  A spatially explicit height–diameter model for Scots pine in Estonia , 2011, European Journal of Forest Research.

[28]  R. Young Managing municipal green space for ecosystem services , 2010 .

[29]  G. Dahle,et al.  Review of Literature on the Function and Allometric Relationships of Tree Stems and Branches , 2009, Arboriculture & Urban Forestry.

[30]  Shongming Huang,et al.  Using Nonlinear Mixed Model Technique to Determine the Optimal Tree Height Prediction Model for Black Spruce , 2009 .

[31]  M. Lefsky,et al.  Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? , 2009, Urban Ecosystems.

[32]  He Dong,et al.  Differentiation Characteristics of a 50-year-established Metasequoia glyptostroboides Plantation , 2009 .

[33]  C. Peng,et al.  Individual height–diameter models for young black spruce (Picea mariana) and jack pine (Pinus banksiana) plantations in New Brunswick, Canada , 2009 .

[34]  Isabel Cañellas,et al.  A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.) , 2008 .

[35]  Hailemariam Temesgen,et al.  Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests , 2008 .

[36]  David Canning,et al.  Urbanization and the Wealth of Nations , 2008, Science.

[37]  V. Lemay,et al.  Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations using a nonlinear mixed-effects model approach , 2007 .

[38]  P. Newton,et al.  Comparative evaluation of five height–diameter models developed for black spruce and jack pine stand-types in terms of goodness-of-fit, lack-of-fit and predictive ability , 2007 .

[39]  D. Hann,et al.  Regional height-diameter equations for major tree species of southwest Oregon. , 2007 .

[40]  D. Bates,et al.  Model Building for Nonlinear Mixed Effects Models , 2007 .

[41]  H. Burkhart,et al.  Regional mixed-effects height–diameter models for loblolly pine (Pinus taeda L.) plantations , 2007, European Journal of Forest Research.

[42]  Klaus von Gadow,et al.  A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain , 2006 .

[43]  E. Mcpherson,et al.  Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project , 1995, Urban Ecosystems.

[44]  P. Bocquier WORLD URBANIZATION PROSPECTS: AN ALTERNATIVE TO THE UN MODEL OF PROJECTION COMPATIBLE WITH URBAN TRANSITION THEORY 1 , 2005 .

[45]  Mahadev Sharma,et al.  Height–Diameter Models Using Stand Characteristics for Pinus banksiana and Picea mariana , 2004 .

[46]  H. Temesgen,et al.  Generalized height–diameter models—an application for major tree species in complex stands of interior British Columbia , 2004, European Journal of Forest Research.

[47]  Rafael Calama,et al.  Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain , 2004 .

[48]  Marie Davidian,et al.  Nonlinear models for repeated measurement data: An overview and update , 2003 .

[49]  B. LePage,et al.  Structure, allometry, and biomass of plantation Metasequoia glyptostroboides in Japan , 2003 .

[50]  M. Tomé,et al.  Height–diameter equation for first rotation eucalypt plantations in Portugal , 2002 .

[51]  C. Peng,et al.  Developing and Validating Nonlinear Height-Diameter Models for Major Tree Species of Ontario's Boreal Forests , 2001 .

[52]  S. Huang,et al.  Development of ecoregion-based height–diameter models for white spruce in boreal forests , 2000 .

[53]  James H. Brown,et al.  A general model for the structure and allometry of plant vascular systems , 1999, Nature.

[54]  Chi Yung Jim,et al.  Urban soil characteristics and limitations for landscape planting in Hong Kong , 1998 .

[55]  Keiko Satoh Metasequoia Travels the Globe , 1998 .

[56]  L. Zhang Cross-validation of Non-linear Growth Functions for Modelling Tree Height–Diameter Relationships , 1997 .

[57]  U. Ackermann-Liebrich,et al.  Particulate matter < 10 μm (PM10) and total suspended particulates (TSP) in urban, rural and alpine air in Switzerland , 1995 .

[58]  Douglas P. Wiens,et al.  Comparison of nonlinear height–diameter functions for major Alberta tree species , 1992 .

[59]  E. Gregory McPherson,et al.  Assessing the Benefits and Costs of the Urban Forest , 1992, Arboriculture &amp; Urban Forestry.

[60]  D. Bates,et al.  Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.

[61]  T. Oke The energetic basis of the urban heat island , 1982 .

[62]  J. Neter,et al.  Applied linear statistical models : regression, analysis of variance, and experimental designs , 1974 .

[63]  A. J. Guillarmod,et al.  Flora of Lesotho (Basutoland) , 1972 .

[64]  H. S. Horn The adaptive geometry of trees , 1971 .

[65]  R. Curtis Height-Diameter and Height-Diameter-Age Equations For Second-Growth Douglas-Fir , 1967 .

[66]  P. Larson Stem Form Development of Forest Trees , 1963 .

[67]  W. Cooper,et al.  An Ecological Reconnaissance in the Native Home of Metasequoia Glyptostroboides , 1950 .