Ubiquity of Kostka polynomials

We report about results revolving around Kostka-Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call {\it Liskova semigroup}. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among such polynomials we study rectangular $q$-Catalan numbers; generalized exponents polynomials; principal specializations of the internal product of Schur functions; generalized $q$-Gaussian polynomials; parabolic Kostant partition function and its $q$-analog; certain generating functions on the set of transportation matrices. In each case we apply rigged configurations technique to obtain some interesting and new information about Kostka-Foulkes and parabolic Kostka polynomials, Kostant partition function, MacMahon, Gelfand-Tsetlin and Chan-Robbins polytopes. We describe certain connections between generalized saturation and Fulton's conjectures and parabolic Kostka polynomials; domino tableaux and rigged configurations. We study also some properties of $l$-restricted generalized exponents and the stable behaviour of certain Kostka-Foulkes polynomials.

[1]  R. Stanley Log‐Concave and Unimodal Sequences in Algebra, Combinatorics, and Geometry a , 1989 .

[2]  Doron Zeilberger Proof of a Conjecture of Chan, Robbins, and Yuen , 1998 .

[3]  Character formulae of sl̂n-modules and inhomogeneous paths , 1998, math/9802085.

[4]  J. Weyman The equations of conjugacy classes of nilpotent matrices , 1989 .

[5]  A. Morris A survey on Hall-Littlewood functions and their applications to representation theory , 1977 .

[6]  B. G. Wybourne,et al.  Powers of the Vandermonde determinant and the quantum Hall effect , 1994 .

[7]  Richard P. Stanley,et al.  The stable behavior of some characters of SL 1 , 1984 .

[8]  Anne Schilling,et al.  A bijection between Littlewood-Richardson tableaux and rigged configurations , 1999, math/9901037.

[9]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[10]  Ira M. Gessel,et al.  Determinants, Paths, and Plane Partitions , 1989 .

[11]  I. G. Macdonald An Elementary Proof of a q-Binomial Identity , 1989 .

[12]  Mark Reeder Exterior Powers of the Adjoint Representation , 1997, Canadian Journal of Mathematics.

[13]  Kathleen M. O'Hara,et al.  Unimodality of gaussian coefficients: A constructive proof , 1990, J. Comb. Theory, Ser. A.

[14]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[15]  S. Kato Spherical functions and aq-analogue of Kostant's weight multiplicity formula , 1982 .

[16]  Croissance des polynômes de Kostka , 1990 .

[17]  B. Kostant,et al.  Lie Group Representations on Polynomial Rings , 1963 .

[18]  A. Morris The characters of the groupGL(n, q) , 1963 .

[19]  David P. Robbins,et al.  On the Volume of the Polytope of Doubly Stochastic Matrices , 1999, Exp. Math..

[20]  A. Kirillov On the Kostka-Green-Foulkes polynomials and Clebsch-Gordan numbers , 1988 .

[21]  Unimodality of generalized Gaussian coefficients , 1992, hep-th/9212152.

[22]  R. Brylinski Matrix Concomitants with the Mixed Tensor Model , 1993 .

[23]  A. Zelevinsky,et al.  A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .

[24]  Lynne M. Butler,et al.  Subgroup Lattices and Symmetric Functions , 1994 .

[25]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[26]  J. Remmel,et al.  A combinatorial interpretation of the inverse kostka matrix , 1990 .

[27]  Robert A. Proctor Odd symplectic groups , 1988 .

[28]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .

[29]  Kathleen M. O'Hara,et al.  A Unimodality Identity for a Schur Function , 1992, J. Comb. Theory, Ser. A.

[30]  B. Sagan The Symmetric Group , 2001 .

[31]  John R. Stembridge,et al.  Rational tableaux and the tensor algebra of gln , 1987, J. Comb. Theory, Ser. A.

[32]  日比 孝之,et al.  Algebraic combinatorics on convex polytopes , 1992 .

[33]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[34]  Jerzy Weyman,et al.  Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class , 2000, Eur. J. Comb..

[35]  J. Thibon,et al.  Hall-Littlewood functions and Kostka-Foulkes polynomials in representation theory. , 1994 .

[36]  Doron Zeilberger,et al.  Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials , 1989 .

[37]  R. Brylinski Stable calculus of the mixed tensor character I , 1989 .

[38]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[39]  D. E. Littlewood,et al.  On Certain Symmetric Functions , 1961 .

[40]  NEW COMBINATORIAL FORMULA FOR MODIFIED HALL-LITTLEWOOD POLYNOMIALS , 1998, math/9803006.

[41]  Anne Schilling,et al.  Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials , 1998, math/9802111.

[42]  A. Kirillov,et al.  A Generalization of the Kostka–Foulkes Polynomials , 1998, math/9803062.

[43]  Andrei Zelevinsky,et al.  Triple Multiplicities for sl(r + 1) and the Spectrum of the Exterior Algebra of the Adjoint Representation , 1992 .

[44]  R. K. Gupta,et al.  Generalized exponents via Hall-Littlewood symmetric functions , 1987 .

[45]  David P. Robbins,et al.  On the Volume of a Certain Polytope , 1998, Exp. Math..

[46]  H. O. Foulkes A survey of some combinatorial aspects of symmetric functions , 1974 .

[47]  A. Garsia,et al.  On certain graded Sn-modules and the q-Kostka polynomials , 1992 .

[48]  On the decomposition of the tensor algebra of the classical Lie algebras , 1985 .

[49]  First layer formulas for characters of ( , 1987 .

[50]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[51]  L. Carlitz,et al.  Two element lattice permutation numbers and their $q$-generalization , 1964 .