An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity

Cholinergic modulation of cortex powerfully influences information processing and brain states, causing robust desynchronization of local field potentials and strong decorrelation of responses between neurons. We found that intracortical cholinergic inputs to mouse visual cortex specifically and differentially drive a defined cortical microcircuit: they facilitate somatostatin-expressing (SOM) inhibitory neurons that in turn inhibit parvalbumin-expressing inhibitory neurons and pyramidal neurons. Selective optogenetic inhibition of SOM responses blocked desynchronization and decorrelation, demonstrating that direct cholinergic activation of SOM neurons is necessary for this phenomenon. Optogenetic inhibition of vasoactive intestinal peptide-expressing neurons did not block desynchronization, despite these neurons being activated at high levels of cholinergic drive. Direct optogenetic SOM activation, independent of cholinergic modulation, was sufficient to induce desynchronization. Together, these findings demonstrate a mechanistic basis for temporal structure in cortical populations and the crucial role of neuromodulatory drive in specific inhibitory-excitatory circuits in actively shaping the dynamics of neuronal activity.

[1]  J. Poulet,et al.  Thalamic control of cortical states , 2012, Nature Neuroscience.

[2]  Xiaolong Jiang,et al.  The organization of two new cortical interneuronal circuits , 2013, Nature Neuroscience.

[3]  Mriganka Sur,et al.  Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes , 2012, Proceedings of the National Academy of Sciences.

[4]  B. Rudy,et al.  Perisomatic GABA Release and Thalamocortical Integration onto Neocortical Excitatory Cells Are Regulated by Neuromodulators , 2008, Neuron.

[5]  C. H. Vanderwolf,et al.  Thalamic control of neocortical activation: A critical re-evaluation , 1988, Brain Research Bulletin.

[6]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. , 2003, Journal of neurophysiology.

[7]  A. Bandrowski,et al.  Muscarinic reduction of GABAergic synaptic potentials results in disinhibition of the AMPA/kainate-mediated EPSP in auditory cortex , 1997, Brain Research.

[8]  R. Yuste,et al.  Decorrelating Action of Inhibition in Neocortical Networks , 2013, The Journal of Neuroscience.

[9]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[10]  A. Thiele,et al.  Acetylcholine dynamically controls spatial integration in marmoset primary visual cortex. , 2005, Journal of neurophysiology.

[11]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[12]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[13]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[14]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[15]  C. Petersen,et al.  Membrane Potential Dynamics of GABAergic Neurons in the Barrel Cortex of Behaving Mice , 2010, Neuron.

[16]  Corbett Bennett,et al.  Prolonged Disynaptic Inhibition in the Cortex Mediated by Slow, Non-α7 Nicotinic Excitation of a Specific Subset of Cortical Interneurons , 2012, The Journal of Neuroscience.

[17]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[18]  Egidio D’Angelo,et al.  Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage , 2013, PloS one.

[19]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[20]  H. Adesnik,et al.  A neural circuit for spatial summation in visual cortex , 2012, Nature.

[21]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[22]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[23]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[24]  Joel Zylberberg,et al.  Inhibitory Interneurons Decorrelate Excitatory Cells to Drive Sparse Code Formation in a Spiking Model of V1 , 2013, The Journal of Neuroscience.

[25]  Kenneth D. Harris,et al.  Top-Down Control of Cortical State , 2013, Neuron.

[26]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[27]  J. Waters,et al.  Modulation of high- and low-frequency components of the cortical local field potential via nicotinic and muscarinic acetylcholine receptors in anesthetized mice. , 2014, Journal of neurophysiology.

[28]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[29]  Y. Dan,et al.  Burst Spiking of a Single Cortical Neuron Modifies Global Brain State , 2009, Science.

[30]  P. Dayan,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S9 References the Asynchronous State in Cortical Circuits , 2022 .

[31]  Ann Allergy,et al.  O R I G I N a L a R T I C L E S , 2022 .

[32]  Z. J. Huang,et al.  High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression , 2008, PloS one.

[33]  B. Sabatini,et al.  M1 Muscarinic Receptors Boost Synaptic Potentials and Calcium Influx in Dendritic Spines by Inhibiting Postsynaptic SK Channels , 2010, Neuron.

[34]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[35]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  J. Coyle,et al.  Cholinergic innervation of mouse forebrain structures , 1994, The Journal of comparative neurology.

[37]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[38]  Wolf Singer,et al.  Acetylcholine-induced inhibition in the cat visual cortex is mediated by a GABAergic mechanism , 1989, Brain Research.

[39]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[40]  Francesco Marrosu,et al.  Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats , 1995, Brain Research.

[41]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[42]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[43]  Jaime de la Rocha,et al.  Supplementary Information for the article ‘ Correlation between neural spike trains increases with firing rate ’ , 2007 .

[44]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[45]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[46]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[47]  M. Hawken,et al.  Loose-patch–juxtacellular recording in vivo—A method for functional characterization and labeling of neurons in macaque V1 , 2006, Journal of Neuroscience Methods.

[48]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[49]  Jack Waters,et al.  Selective optogenetic stimulation of cholinergic axons in neocortex. , 2012, Journal of neurophysiology.

[50]  Michael A. Henninger,et al.  High-Performance Genetically Targetable Optical Neural Silencing via Light-Driven Proton Pumps , 2010 .

[51]  Y. Kawaguchi,et al.  Selective cholinergic modulation of cortical GABAergic cell subtypes. , 1997, Journal of neurophysiology.

[52]  K. Harris,et al.  Cortical state and attention , 2011, Nature Reviews Neuroscience.

[53]  Alexander Thiele,et al.  Optimizing brain processing , 2009, Nature Neuroscience.

[54]  Karel Svoboda,et al.  ScanImage: Flexible software for operating laser scanning microscopes , 2003, Biomedical engineering online.

[55]  S. Hestrin,et al.  Nicotinic modulation of cortical circuits , 2014, Front. Neural Circuits.

[56]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[57]  Hannah Monyer,et al.  Functional Characterization of Intrinsic Cholinergic Interneurons in the Cortex , 2007, The Journal of Neuroscience.

[58]  D. McCormick,et al.  Mechanisms of action of acetylcholine in the guinea‐pig cerebral cortex in vitro. , 1986, The Journal of physiology.

[59]  Yang Dan,et al.  Cell-type-specific modulation of neocortical activity by basal forebrain input , 2013, Front. Syst. Neurosci..

[60]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[61]  D. McCormick Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity , 1992, Progress in Neurobiology.

[62]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[63]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[64]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[65]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[66]  Michael J. Goard,et al.  Basal Forebrain Activation Enhances Cortical Coding of Natural Scenes , 2009, Nature Neuroscience.

[67]  L. Tricoire,et al.  Illuminating Cholinergic Microcircuits in the Neocortex , 2007, The Journal of Neuroscience.