Generalized Transition Waves and Their Properties

In this paper, we generalize the usual notions of waves, fronts, and propagation speeds in a very general setting. These new notions, which cover all usual situations, involve uniform limits, with respect to the geodesic distance, to a family of hypersurfaces that are parametrized by time. We prove the existence of new such waves for some time‐dependent reaction‐diffusion equations, as well as general intrinsic properties, some monotonicity properties, and some uniqueness results for almost‐planar fronts. The classification results, which are obtained under some appropriate assumptions, show the robustness of our general definitions. © 2012 Wiley Periodicals, Inc.

[1]  K. P. Hadeler,et al.  Travelling fronts in nonlinear diffusion equations , 1975 .

[2]  Koichi Uchiyama,et al.  The behavior of solutions of some non-linear diffusion equations for large time , 1977 .

[3]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[4]  D. A. Larson Transient Bounds and Time-Asymptotic Behavior of Solutions to Nonlinear Equations of Fisher Type , 1978 .

[5]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[6]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[7]  Christopher Jones Asymptotic behaviour of a reaction-diffusion equation in higher space dimensions , 1983 .

[8]  Henri Berestycki,et al.  Traveling Wave Solutions to Combustion Models and Their Singular Limits , 1985 .

[9]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[10]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[11]  Bertram Zinner,et al.  EXISTENCE OF TRAVELING WAVES FOR REACTION DIFFUSION EQUATIONS OF FISHER TYPE IN PERIODIC MEDIA , 1995 .

[12]  M. Schatzman,et al.  A three‐layered minimizer in R2 for a variational problem with a symmetric three‐well potential , 1996 .

[13]  Xinfu Chen,et al.  Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations , 1997, Advances in Differential Equations.

[14]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .

[15]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: II. Existence , 1999 .

[16]  François Hamel,et al.  Existence of Nonplanar Solutions of a Simple Model of Premixed Bunsen Flames , 1999, SIAM J. Math. Anal..

[17]  Wenxian Shen,et al.  Traveling Waves in Time Almost Periodic Structures Governed by Bistable Nonlinearities: I. Stability and Uniqueness , 1999 .

[18]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[19]  S. A. Gourley Travelling front solutions of a nonlocal Fisher equation , 2000, Journal of mathematical biology.

[20]  Wenxian Shen,et al.  Dynamical Systems and Traveling Waves in Almost Periodic Structures , 2001 .

[21]  François Hamel,et al.  Travelling Fronts and Entire Solutions¶of the Fisher-KPP Equation in ℝN , 2001 .

[22]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[23]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[24]  Jack Xin,et al.  Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle , 2004 .

[25]  Wenxian Shen,et al.  Traveling Waves in Diffusive Random Media , 2004 .

[26]  Jérôme Coville,et al.  Propagation speed of travelling fronts in non local reaction–diffusion equations , 2005 .

[27]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[28]  Jack Xin,et al.  Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds , 2005 .

[29]  N. Nadirashvili,et al.  Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena , 2005 .

[30]  Régis Monneau,et al.  Existence and qualitative properties of multidimensional conical bistable fronts , 2005 .

[31]  Masaharu Taniguchi,et al.  Existence and global stability of traveling curved fronts in the Allen-Cahn equations , 2005 .

[32]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[33]  Arnd Scheel,et al.  Corner defects in almost planar interface propagation , 2006 .

[34]  Vitaly Volpert,et al.  Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources , 2006 .

[35]  Masaharu Taniguchi,et al.  Traveling Fronts of Pyramidal Shapes in the Allen-Cahn Equations , 2007, SIAM J. Math. Anal..

[36]  François Hamel,et al.  Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity , 2008 .

[37]  Rui Huang Stability of Travelling Fronts of the Fisher-KPP Equation in $$\mathbb {R}^{N}$$ , 2008 .

[38]  Hiroshi Matano,et al.  Bistable traveling waves around an obstacle , 2009 .

[39]  Lionel Roques,et al.  Fast propagation for KPP equations with slowly decaying initial conditions , 2009, 0906.3164.

[40]  Traveling fronts in space-time periodic media , 2009, 1609.01431.

[41]  Andrej Zlatoš,et al.  Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability , 2009, 0901.2369.

[42]  J. Roquejoffre,et al.  Generalized fronts for one-dimensional reaction-diffusion equations , 2009 .

[43]  Henri Berestycki,et al.  The non-local Fisher–KPP equation: travelling waves and steady states , 2009 .

[44]  J. Roquejoffre,et al.  Stability of Generalized Transition Fronts , 2009 .

[45]  Masaharu Taniguchi,et al.  The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations , 2009 .

[46]  L. Ryzhik,et al.  Traveling waves in a one-dimensional heterogeneous medium , 2009 .

[47]  Henri Berestycki,et al.  The speed of propagation for KPP type problems. II , 2010 .

[48]  Francois Hamel,et al.  Two-dimensional curved fronts in a periodic shear flow , 2010, 1006.2580.

[49]  L. Rossi,et al.  Propagation phenomena for time heterogeneous KPP reaction–diffusion equations , 2011, 1104.3686.

[50]  L. Roques,et al.  Uniqueness and stability properties of monostable pulsating fronts , 2011 .

[51]  Lenya Ryzhik,et al.  Existence and Non-Existence of Fisher-KPP Transition Fronts , 2010, 1012.2392.