A symmetry suppresses the cochlear catastrophe.
暂无分享,去创建一个
[1] C. Fernández. Dimensions of the Cochlea (Guinea Pig) , 1952 .
[2] W. Peake,et al. Acoustic input-admittance of the alligator-lizard ear: Nonlinear features , 1984, Hearing Research.
[3] V. Nedzelnitsky,et al. Measurements of Sound Pressure in the Cochleae of Anesthetized Cats , 1974 .
[4] Anthony W. Gummer,et al. Direct measurement of basilar membrane stiffness in the guinea pig , 1981 .
[5] E Zwicker,et al. Interrelation of different oto-acoustic emissions. , 1984, The Journal of the Acoustical Society of America.
[6] George Esq. Green,et al. On the Motion of Waves in a variable canal of small depth and width , 1838 .
[7] L. Robles,et al. Basilar membrane mechanics at the base of the chinchilla cochlea. I. Input-output functions, tuning curves, and response phases. , 1986, The Journal of the Acoustical Society of America.
[8] J. Pierce,et al. The cochlear compromise. , 1976, The Journal of the Acoustical Society of America.
[9] W. T. Peake,et al. Middle-ear characteristics of anesthetized cats. , 1967, The Journal of the Acoustical Society of America.
[10] B. P. Bogert,et al. A Dynamical Theory of the Cochlea , 1950 .
[11] W. S. Rhode. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. , 1971, The Journal of the Acoustical Society of America.
[12] D. D. Greenwood. Critical Bandwidth and the Frequency Coordinates of the Basilar Membrane , 1961 .
[13] George Zweig. Auditory Speech Preprocessors , 1989, HLT.
[14] Anthony W. Gummer,et al. Basilar membrane motion in the pigeon measured with the Mössbauer technique , 1987, Hearing Research.
[15] Thomas J. Lynch. Signal processing by the cat middle ear: admittance and transmission, measurements and models , 1981 .
[16] G. Zweig,et al. Finding the impedance of the organ of Corti. , 1991, The Journal of the Acoustical Society of America.
[17] J. D. Miller,et al. A frequency-position map for the chinchilla cochlea. , 1977, The Journal of the Acoustical Society of America.
[18] Józef Zwislocki-Mościcki,et al. Theorie der Schneckenmechanik: qualitative und quantitative Analyse , 1948 .
[19] J B Allen. Cochlear models - 1978. , 1979, Scandinavian audiology. Supplementum.
[20] S. Khanna,et al. Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat , 1989, Hearing Research.
[21] W. T. Peake,et al. Input impedance of the cochlea in cat. , 1982, The Journal of the Acoustical Society of America.
[22] M. Liberman. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. , 1982, The Journal of the Acoustical Society of America.
[23] H. Jeffreys. On Certain Approximate Solutions of Lineae Differential Equations of the Second Order , 1925 .
[24] V. Nedzelnitsky,et al. Sound pressures in the basal turn of the cat cochlea. , 1980, The Journal of the Acoustical Society of America.
[25] P PIALOUX,et al. [The external ear]. , 1955, Les Annales d'oto-laryngologie.
[26] J. Allen,et al. A parametric study of cochlear input impedance. , 1991, The Journal of the Acoustical Society of America.
[27] G. Wilkinson. The Theory of Hearing , 1925, Nature.
[28] D T Kemp. The evoked cochlear mechanical response and the auditory microstructure - evidence for a new element in cochlear mechanics. , 1979, Scandinavian audiology. Supplementum.
[29] F. Bloch,et al. Note on the Radiation Field of the electron , 1937 .
[30] John J. Rosowski,et al. The Effectiveness of External and Middle Ears in Coupling Acoustic Power into the Cochlea , 1986 .
[31] M R Schroeder,et al. An integrable model for the basilar membrane. , 1973, The Journal of the Acoustical Society of America.
[32] G Zweig,et al. Reflection of retrograde waves within the cochlea and at the stapes. , 1991, The Journal of the Acoustical Society of America.
[33] E. de Boer,et al. Matching impedance of a nonuniform transmission line: application to cochlear modeling. , 1987, The Journal of the Acoustical Society of America.
[34] C. Daniel Geisler,et al. Longitudinal Stiffness Coupling in a 1-Dimensional Model of the Peripheral Ear , 1986 .
[35] Jont B. Allen,et al. Measurement of Eardrum Acoustic Impedance , 1986 .
[36] S. Khanna,et al. Tympanic membrane vibrations in cats studied by time-averaged holography. , 1972, The Journal of the Acoustical Society of America.
[37] On Riccati equations describing impedance relations for forward and backward excitation in the one-dimensional cochlea model. , 1987, The Journal of the Acoustical Society of America.
[38] D. T. Kemp,et al. Observations on the Generator Mechanism of Stimulus Frequency Acoustic Emissions — Two Tone Suppression , 1980 .
[39] An Isolated Sound Emitter in the Cochlea: Notes on Modelling , 1986 .
[40] Forward and reverse waves in the one-dimensional model of the cochlea , 1986, Hearing Research.
[41] K. Haller. Quantum Electrodynamics , 1979, Nature.
[42] D. Kemp. Stimulated acoustic emissions from within the human auditory system. , 1978, The Journal of the Acoustical Society of America.
[43] S. Neely. Finite difference solution of a two-dimensional mathematical model of the cochlea. , 1981, The Journal of the Acoustical Society of America.
[44] G. Zweig. Basilar membrane motion. , 1976, Cold Spring Harbor symposia on quantitative biology.
[45] B. Bohne,et al. Location of structurally similar areas in chinchilla cochleas of different lengths. , 1979, The Journal of the Acoustical Society of America.
[46] M. Sondhi,et al. Method for computing motion in a two-dimensional cochlear model. , 1978, The Journal of the Acoustical Society of America.