Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations.

The Lowe-Andersen thermostat is a momentum conserving and Galilean invariant analog of the Andersen thermostat. Like the Andersen thermostat it has the advantage of being local. We show that by using a minimal thermostat interaction radius in a molecular dynamics simulation, it perturbs the system dynamics to a far lesser extent than the Andersen method. This alleviates a well known drawback of the Andersen thermostat by allowing high thermostatting rates without the penalty of significantly suppressed diffusion in the system.

[1]  B. Smit,et al.  Understanding the loading dependence of self-diffusion in carbon nanotubes. , 2005, Physical review letters.

[2]  Zhong-Yuan Lu,et al.  The effects of Lowe-Andersen temperature controlling method on the polymer properties in mesoscopic simulations. , 2005, The Journal of chemical physics.

[3]  R. D. Groot,et al.  From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat. , 2005, The Journal of chemical physics.

[4]  B. Hafskjold,et al.  Can such Long Time Steps Really be used in Dissipative Particle Dynamics Simulations? , 2004 .

[5]  Eajf Frank Peters,et al.  Elimination of time step effects in DPD , 2004 .

[6]  K. Kremer,et al.  Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  I. Vattulainen,et al.  How would you integrate the equations of motion in dissipative particle dynamics simulations , 2003, cond-mat/0302454.

[8]  Tony Shardlow,et al.  Splitting for Dissipative Particle Dynamics , 2002, SIAM J. Sci. Comput..

[9]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[10]  J. H. R. Clarke,et al.  A new algorithm for dissipative particle dynamics , 2001 .

[11]  C. Lowe An alternative approach to dissipative particle dynamics , 1999 .

[12]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[13]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[14]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[15]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[16]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[19]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[20]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[21]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[22]  C. Lowe,et al.  Simulating the Dynamics of Mesoscopic Systems , 2004 .

[23]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .