TEXT SENTIMENTS FOR FORUMS HOTSPOT DETECTION

The user generated content on the web grows rapidly in this emergent information age. The evolutionary changes in technology make use of such information to capture only the user’s essence and finally the useful information are exposed to information seekers. Most of the existing research on text information processing, focuses in the factual domain rather than the opinion domain. In this paper we detect online hotspot forums by computing sentiment analysis for text data available in each forum. This approach analyses the forum text data and computes value for each word of text. The proposed approach combines K-means clustering and Support Vector Machine with PSO (SVM-PSO) classification algorithm that can be used to group the forums into two clusters forming hotspot forums and non-hotspot forums within the current time span. The proposed system accuracy is compared with the other classification algorithms such as Naive Bayes, Decision tree and SVM. The experiment helps to identify that K-means and SVM-PSO together achieve highly consistent results .