Number-Conserving Reversible Cellular Automata and Their Computation-Universality
暂无分享,去创建一个
[1] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[2] Charles H. Bennett. Notes on the history of reversible computation , 2000, IBM J. Res. Dev..
[3] Kenichi Morita,et al. Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata , 1992, Inf. Process. Lett..
[4] Tommaso Toffoli,et al. Computation and Construction Universality of Reversible Cellular Automata , 1977, J. Comput. Syst. Sci..
[5] Katsunobu Imai,et al. A computation-universal two-dimensional 8-state triangular reversible cellular automaton , 2000, Theor. Comput. Sci..
[6] Eric Goles. Sand pile automata , 1992 .
[7] Maurice Margenstern,et al. SAND PILE AS A UNIVERSAL COMPUTER , 1996 .
[8] Kenichi Morita,et al. Universality of a Reversible Two-Counter Machine , 1996, Theor. Comput. Sci..
[9] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[10] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[11] Kenichi Morita,et al. Computation-Universal Models of Two-Dimensional 16-State Reversible Cellular Automata , 1992 .
[12] N. Margolus. Physics-like models of computation☆ , 1984 .
[13] Karel Culik,et al. A Simple Universal Cellular Automaton and its One-Way and Totalistic Version , 1987, Complex Syst..
[14] K. Morita,et al. Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .